SR253 Series
 Digital Controller Instruction Manual

Thank you for purchasing the Shimaden SR253 Series. Please check that the delivered product is the correct item you ordered. Please do not begin operating this product until you have read this instruction manual thoroughly and understand its contents.

"Notice"

Please ensure that this instruction manual is given to the final user of the instrument.

Preface

This instruction manual is meant for those who will be involved in the wiring, installation, operation and routine maintenance of the SR253 series. This manual describes the care, installation and wiring procedures for the operation series. Keep this manual at the work site during operation of the SR253 series. While using this instrument, you should always follow the guidance provided herein.
For matters regarding safety, potential damage to equipment and/or facilities, additional instructions are indicated by the following headings:

\triangle WARNING

Exercise extreme caution as indicated. This heading indicates hazardous conditions that could cause injury or death of personnel.

\triangle CAUTION

Exercise extreme caution as indicated. This heading indicates hazardous conditions that could cause damage to equipment and/or facilities.

NOTE

This heading indicates additional instruction and/or notes.

For matters regarding safety

Abstract

Warning SR253 series controller is designed for controlling temperature, humidity and other physical subjects. It must not be used in any way that may adversely affect the safety, health or working conditions of those who come into contact with the effects of its usage. When used, adequate and effective safety countermeasures must be provided at all times. No warranty, express or implied, is valid in the case of using this product without the use of proper safety countermeasures correspondingly.

4. Warning

- Before you start to use this instrument, place it in a control panel or the like and avoid touching the terminals.
- You should not draw the instrument out of its case nor should you put your hand or any dielectric into said case. Such an act may result in death or serious bodily injury from electric shock.

Caution

To avoid damage to the connected equipment, facilities or the product itself due to a fault of the product, safety countermeasure must be taken before usage, such as proper installation of the fuse and the overheating protection device. No warranty, express or implied, is valid in the case of usage without having implemented proper safety countermeasures.

. Caution

- The \triangle mark on the plate affixed to the instrument:

On the nameplate affixed to the case of your instrument, the Λ mark is printed. This is to warn you of the risk of electrical shock which may result if the charger is touched while it is energized.

- A means to allow the power to be turned off, such as a switch or a breaker, should be installed in the external power circuit to be connected to the power terminal of the instrument.
Fix the switch or the breaker adjacently to the instrument in a position which allows it to be operated with ease, and with an indication that it is a means of turning the power off.
- Fuse:

Since the instrument does not have a built-in fuse, do not forget to install a fuse in the power circuit to be connected to the power terminal. Fuse Rating: 250 V AC $1.0 \mathrm{~A} /$ medium lagged or lagged type

- When you wire, tighten the terminal connections firmly.
- Use the instrument with a power voltage and frequency within their rated ranges.
- A voltage/current different from that of the input specification should not be added on the input terminal. It may reduce the life of the product and/or result in problems with the product.
- Voltage/current of a load to be connected to the output terminal should be within a rated range. Otherwise, the temperature will rise and reduce the life of the product and/or result in problems with the product.
- The SR253 series controller is provided with a draft hole for heat discharge. Take care to prevent metal or other foreign matter from obstructing it. Failure to do so may result in problems with the product.
- Do not block the draft hole or allow dust or the like to adhere to it. Any rise in temperature or insulation failure may result in a shortening of the life of product and/or problems with the product.
- It should be noted that repeated tolerance tests against voltage, noise, surge, etc., may lead to deterioration of the instrument.
- Remodeling the instrument or using it in an anomalous way is prohibited.
- For safe and proper use of the instrument, observe the instructions described in this manual.

Contents

Page

1. Introduction 1
1-1. Check before use 1
1) Confirmation of model codes 1
2) Checking accessories 1
1-2. Caution for use 1
2. Installation 2
2-1. Installation site 2
2-2. Mounting 2
2-3. External dimensions and panel cutout 2
1) SR253 External dimensions and panel cutout 2
2) Dimension of current transformer (CT) for heater break alarm 2
2-4. Wiring 3
2-5. Terminal arrangement diagram 4
2-6. Terminal arrangement table 4
3. Front Panel 5
3-1. Diagram of front panel and names of parts 5
3-2. Instruction for front panel 5
4. Key Switch Operation and Description of Screens 6
4-1. Application of power 6
4-2. How to move LCD screens and cursor 6
$4-3$. Data change and registration 6
1) Change of numerical value 6
2) Change of letter (condition or the like) 6
5. LCD Screen Parameter Diagram 7
6. Functions of the Respective Groups 8
6-1. Lock/Initialization group (Group 8) 8~9
1) Setting of keylock 8
2) Setting of screen return time 8
3) Setting of initialization 9
4) Setting of mode 9
6-2. Unit/Measuring range group (Group 7) 10~13
5) Setting of the PV bias 10
6) Setting of the PV filter 10
7) Setting of R.T.D. type 11
8) Setting of reference junction compensation 11
9) Setting of measuring unit 11
10) Setting of rounding of lowest decimal place 11
11) Setting of range 12~13
12) Setting of decimal point 13
13) Setting of PV scaling 13
6-3. Output group (Group 6) 4~15
14) Setting of output characteristics (direct action/reverse action) 14
15) Setting of output cycle 15
16) Setting of output against Scale Over. 15
6-4. Option group (Group 5) 16~20
(O) Matters Related to the Setting of Analog Output
17) Setting of analog output assignment 17
18) Setting of analog output scaling 17
O Matters Related to Setting of DI
19) Setting of DI assignment 18
(o) Matters Related to Setting of Heater Break Alarm
20) Display of CT current 19
21) Setting of current value for the heater break alarm 19
22) Setting of current value for the heater loop alarm 19
23) Setting of the heater break/loop alarm mode 20
(O) Matters Related to Setting for Communication Environment
24) Communication-related setting 20
$6-5$. Event/DO group (Group 4) 21~25
25) Setting of event action and DO action mode 22
26) Setting of action point. 23
27) Setting of action hysteresis 23
28) Setting of delay time 24
29) Setting of inhibit action 25
30) Setting of output characteristics 25
6-6. PID group (Group 3) 26~30
31) Setting of proportional band (P) 27
32) Setting of action hysteresis (DF) 27
33) Setting of integral time (I) 27
34) Setting of differential time (D) 27
35) Setting of manual reset (MR) 28
36) Setting of zone 28
37) Setting of dead band 29
38) Setting of output limit 29
39) Setting of zone hysteresis 30
40) Setting of zone PID mode 30
41) Setting of remote PID No 30
42) Setting of target value function. 30
6-7. SV/Remote/Ramp group (Group 2) 31~36
© Matters Related to SV Setting
43) Setting of set value (SV) 31
44) Setting of SV limits 32
45) Setting of selection/switch of multi-SV No 32
(0) Matters Related to Remote Setting
46) Setting of remote bias 32
47) Setting of remote filter 32
48) Setting of remote scale 33
49) Setting of remote mode 33, 34
50) Setting of remote tracking 34
51) Setting of remote proportional coefficient 35
52) Setting of remote linear delay time 35
(O) Matters Related to Ramp Setting
53) Setting of ramp value 35
54) Setting of ramp unit 36
55) Setting of ramp rate 36
6-8. Control group (Group 1) 37~39
56) Execution/stop of auto tuning (AT) 37
57) Setting of auto tuning point 38
58) Auto/manual of control output 38
59) Execution/standby of control 39
60) Stop/restart of ramp control 39
61) Selection of communication 39
6-9. Monitor group (Group 0) 40~41
62) Explanation about group 0-0 screen 40
63) Setting of SV value 40
64) Switching of SV No. in execution 40
65) Switching to remote $S V$ 41
66) Explanation about group $0-1$ screen 41
67) Explanation about group 0-2 screen 41
7. External Input/Output 42
8. Connecting Devices for Instrument Terminals 43
8-1. 24-pin plug 43
8-2. Multi-SV No. switching device 43
9. Error Messages (PV Display) 44
9-1. Problems found in check-up upon application of power 44
9-2. Problems with PV Input 44
10. List of Parameters 45~51
11. Sheet for Recording Set Parameters 52, 53
12. Specifications 54~58

1. Introduction

1-1. Check before use

This product has been fully checked for quality assurance prior to shipment. Nevertheless, you are requested to make sure that there is no error, damage or shortage of delivered items by confirming the model codes and checking the external view of the product and the number of accessories.

1) Confirmation of model codes

Check the model codes stuck to the case of the product to ascertain if the respective codes designate what was specified when you ordered the product, referring to the following code table:

Code and Description
MPU loaded, Multi-function controller
1: Thermocouple 2: R.T.D 3: Voltage (mV)
4: Current (mA) 6: Voltage (V)
Y: Contact I: Current P: SSR drive voltage V: Voltage
N : Without Y: Contact I: Current P: SSR drive voltage V: Voltage

0: Without
1: Event contact output - 3 points
2: Event contact output -3 points + heater break alarm (heater current 30A)
3: Event contact output -3 points + heater break alarm (heater current 50A)

04: $4 \sim 20 \mathrm{~mA} \mathrm{DC}$ (not insulated)	14: $4 \sim 20 \mathrm{~mA} \mathrm{DC}$ (insulated)
05: 1~5V DC (not insulated)	15: $1 \sim 5 \mathrm{~V} \mathrm{DC}$ (insulated)
06: $0 \sim 10 \mathrm{~V}$ DC (not insulated)	16: $0 \sim 10 \mathrm{~V}$ DC (insulated)

00: Without

13: One output $0 \sim 10 \mathrm{mV}$ DC 23: Two outputs $0 \sim 10 \mathrm{mV}$ DC
14: One output $4 \sim 20 \mathrm{~mA} \mathrm{DC} \quad$ 24: Two outputs $4 \sim 20 \mathrm{~mA} \mathrm{DC}$ 16: One output $0 \sim 10 \mathrm{~V}$ DC 26: Two outputs $0 \sim 10 \mathrm{~V}$ DC

0 : Without 1: With
2: With (Cord equipped)
0: Without 5: RS-485 6: RS-442A 7: RS-232C
0: Without 9: With
2) Checking accessories
\square Standard accessories
(1) Instruction manual ... 1 set
(2) Unit decal.. 1 sheet
\square Optional accessories
(1) Current transformer (CT) for heater break alarm : To be equipped when the apparatus has a heater break alarm option When Code 2 is selected (30A) - Model CTL-6-S .. 1 pc. When Code 3 is selected (50A) - Model CTL-12-S36-8 .1 pc .
(2) 24-pin plugs: To be attached when the instrument is equipped with external input and output control signal option When Code 1 is selected - 24 -pin plug, clamp filter .1 set
When Code 2 is selected - 24 -pin plug, 1 m cord (with crimp terminal), clamp filter .1 set

Note 1: Contact our representative or our local office concerning any problems with the product, accessories or related items.

1-2. Caution for use

(1) Avoid operating keys of the front panel with hard or sharp objects or motions. Lightly touch the operating key with finger tip for operation.
(2) Avoid using solvents such as thinner; wipe gently with a dry cloth.

2. Installation

2-1. Installation site

. Caution

In the case where there is an intention to operate this product at one of the following sites, be aware that the occurrence of fire and/or other dangerous situations is considerable.
Exercise caution and avoid these places when selecting an operational site.
(1) Any place where inflammable or corrosive gas, dust or smoke is generated, or is filled with same.
(2) Any place exposed to water, sunlight or high radiant heat from other equipment.
(3) Any place where the ambient temperature for the instrument is below $-10^{\circ} \mathrm{C}$ or above $50^{\circ} \mathrm{C}$.
(4) Any place where the instrument is in close proximity to a device which generates high frequency waves.
(5) Where highly intense vibration or impact is generated or transferred.
(6) Where the relative humidity is $90 \% \mathrm{RH}$ or below dew point.
(7) Where the elevation is in excess of $2,000 \mathrm{~m}$.

2-2. Mounting

Caution

For safety's sake and to maintain the functional level expected of the product, do not remove it from its case.
If it is required to be removed from its case for replacement or for repair, contact our business office in your neighborhood.
(1) Machine the mounting hole by referring to panel cutout below.
(2) Applicable thickness of the mounting panel is from 1.0 to 4.5 mm .
(3) As this product provides mounting fixture, insert the product from the front panel for installation.

2-3. External dimensions and panel cutout

1) SR253 External dimensions and panel cutout

2) Dimension of current transformer (CT) for heater break alarm

For 0-30A (CTL-6-S)

For 0-50A (CTL-12-S36-8)

2-4. Wiring

- Caution

- Always disconnect this product from any power source during wiring operation to prevent electrical shock.
- Avoid touching the wired terminal and charged devices while supplying power.
(1) Wiring operation should be done according to the instruction for the terminal arrangement in section 2-5. Exercise care that no wrong connection is made.
(2) Crimp terminal should accommodate the M3.5 screw and should have a width of less than 7 mm .

(3) For thermocouple input, select the compensation wire suitable to the thermocouple type.
(4) For R.T.D input, leads should be less than 5 in resistance and three leads should have the same resistance.
(5) Input signal line should be conducted safety apart from the high voltage power line.
(6) Shield wiring (single point grounding) is effective for static induction noise.
(7) Short interval twisted pair wire for input signal is effective for electromagnetic induction noise.
(8) When wiring, use wire ($1 \mathrm{~mm}^{2}$ minimum in sectional area) of 600 V Grade Polyvinyl Chloride insulated wire or equivalent wire which has the same ratings.
(9) Earth grounding should be performed with earth resistance less than 100 and with wire thicker than $2 \mathrm{~mm}^{2}$.
(10) Terminal cover

A terminal cover is attached to the terminal portion of the instrument. It is detached easily when lateral force is applied.
During a wiring operation, it should be removed. Once wiring is completed, re-attach it reliably by pressing it into the top and bottom grooves in the terminal portion.
(11) Noise filter

If the instrument appears to have noise interference caused by the power supply, use a noise filter to prevent erroneous functioning.
Install a noise filter on the grounded panel and make the wire connecting the noise filter OUT terminal and the power supply terminal on the controller as short as possible.

Recommended noise filter: TDK ZMB2203-13

2-5. Terminal arrangement diagram

2-6. Terminal arrangement table

Name of terminal	Terminal No.	Description
Analog output terminal (No.1) (option)	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\left.\begin{array}{l}+ \\ -\end{array}\right\} \quad$ Analog output (No.1)
Analog output terminal (No.2) (option)	$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\left.\begin{array}{l}+ \\ -\end{array}\right\} \quad$ Analog output (No.2)
Remote setting input terminal	5	$\left.\begin{array}{l}+ \\ -\end{array}\right\} \quad$ Remote setting input
Input terminal	$\begin{aligned} & \hline 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	$\left.\begin{array}{l}\text { A } \\ B \\ B\end{array}\right\} \quad$ R.T.D.
	7	$\left.\begin{array}{l}+ \\ -\end{array}\right\} \quad$ Voltage, current or thermocouple input
Power terminal	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\left.\begin{array}{l}\mathrm{L} \\ \mathrm{N}\end{array}\right\} \quad \mathrm{AC}$ power supply
Grounding terminal	12	Grounding
Control output terminal (No.1)	$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\left.\begin{array}{ll}\text { COM } & \text { Common } \\ \text { NO } & \text { Normal open } \\ \text { NC } & \text { Nomal close }\end{array}\right\}$ Contact output
	$\begin{aligned} & \hline 13 \\ & 14 \end{aligned}$	+ \} Voltage, current or SSR drive output
Control output terminal (No.2) (option)	$\begin{aligned} & \hline 16 \\ & 17 \\ & 18 \end{aligned}$	$\left.\begin{array}{ll}\text { COM } & \text { Common } \\ \text { NO } & \text { Normal open } \\ \text { NC } & \text { Nomal close }\end{array}\right\}$ Contact output
	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	+ \} Voltage, current or SSR drive output
Event, heater break alarm output terminal (option)	$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & \hline \end{aligned}$	$\left.\begin{array}{lll}\text { COM } & \text { Common } & \\ \text { NO } & \text { Normal open (EV1) } & \begin{array}{l}\text { Normal close is also } \\ \text { NO }\end{array} \\ \text { Nomal open (EV2) } \\ \text { NO } & \text { Nomal open (EV3) }\end{array}\right\}$paramete depending on porameter setting.
Heater break alarm CT input terminal (option)	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	CT input

3. Front Panel

3-1. Diagram of front panel and names of parts

3-2. Instruction for front panel

(1) LED indicator
(1) Measured (PV) value display Displays current measured value.
(2) Error message display

Displays an appropriate message in the case of an error (such as Scale Over).
(2) LCD indicator
(1) Set (SV) No. display

Displays current SV No.
(2) Set (SV) value display

Displays current SV value.
(3) PID No. display

Displays current PID No.
(4) Output display

Displays control output value in bar graph (\%) and numerically (\%).
(5) Deviation display

Displays difference (deviation) between PV value and SV value in bar graph (\%) and numerically (\%).
(6) Set parameter display

Displays various set parameters as selected by front key operation. (21 characters x 4 lines)
(3) Key switches
(1) D I S P (display key)

For use to return to the initial screen of the monitor group.
(2) G R P (group key)

For use to move between groups.
(3) SCRN (screen key)

For use to move within a group.
(4)
\rightarrow (parameter key)
For use to move the cursor ($\boldsymbol{\nabla}$)
■ : This cursor blinks continuously.
(5)
 (shift key)
For use to move from digit to digit of set value.
(6) ∇ (down key) For use to decrease a number in setting a parameter value or data.
(7)
 (up key)
For use to increase a number in setting a parameter value or data.
(8) E N T (entry key)

For use to register a parameter value or data.
(4) Monitoring lamps (orange)
(1) EV1

Lights when EV1 is on.
-
-
(8) DO5

Lights when DO5 is on.
(5) Monitoring lamps (green)
(1) AT

Flashes during the execution of auto tuning.
(2) MAN

Flashes during manual operation of control output.
(3) OUT1

For current or voltage output, the brightness of the lamp changes in proportion to the strength of control output 1. For contact or SSR drive voltage output, the lamp lights when control output 1 turns on and goes out when it turns off.
(4) OUT2

For current or voltage output, the brightness of the lamp changes in proportion to the strength of control output 2. For contact or SSR drive voltage output, the lamp lights when control output 2 turns on, and the lamp goes out when it turns off.
(5) STBY

In execution/standby control, this lamp lights when output is held in a standby (STANBY) state.
(6) RUN

Flashes during the execution of ramp control. It lights when ramp control is temporarily stopped.
(7) ESV

Lights when external switch (EXT) is set in multi-SV No. selection/switching.
(8) REM

Lights when remote setting (REM) is set in SV No. selection.
(9) COM

Lights when parameters or the like are set via communication (COM).

4. Key Switch Operation and Description of Screens

4-1. Application of power

Upon applying power, on the LCD display the following initial screens appear for about 1.5 seconds each, followed by the initial screen of the monitor group. On these initial screens, confirm that this instrument is as specified when your original order was placed.

(1) Series
(2) Types of input/output and measuring range
(3) Functions at each option

4-2. How to move LCD screens and cursor

(1) Moving to initial screen of monitor group

Pressing the D IS P key calls the initial screen of the monitor group onto the display.
(2) Moving from group to group

To move from one group to another group, press the G R P key in the initial screen of the group.
(3) Moving to the first screen of a group

When the G R key is pressed in a screen of any group other than the monitor group, the initial screen of that group is displayed.
(4) Moving within a group

Pressing the SCRN key calls screens of the group one by one in order.
(5) Moving the cursor on the screen

When two or more parameters are shown in a screen, pressing the \square key moves the cursor (\square flashes) to the next parameter.

$4-3$. Data change and registration

1) Change of numerical value

When there are two or more parameters, press the \square key to move the cursor (\square) to the parameter to be changed. When the \square key is pressed, the rightmost digit of the value flashes. Further pressing the $\square \square$ key moves the flashing figure to a digit whose figure is to be changed. Use the $\boldsymbol{\Delta}$ or \square key to change the figure. Press the ENT key to register the data after confirming that the changed value is correct. Upon registration of the data, the flashing stops. (The punctuation mark ":" turns to " $=$ " while a change is being made.)

2) Change of letter (condition or the like)

When there are two or more parameters, press the \square key to move the cursor () to the parameter to be changed. Use the
 or ∇ key to change to a desired condition. Press the ENT key to register the data after confirming that the change has been made correctly. Upon registration of the data, the letters stop flashing. (The punctuation mark ":" turns to "=" while a change is being made.)

LCD Screen Parameter Diagram

6. Functions of the Respective Groups

In Chapter 6, the basic operations of this instrument and the setting procedure are described. Follow the procedure, referring to the LCD screen parameter diagram in Chapter 5.

6-1. Lock/Initialization group (Group 8)

Press the G R P key to call the LOCK/INIT screen (Group 8-0) onto display. Then press the SCRN key to move to a screen in which a setting or a change is to be made. Use the \square key for selecting a parameter on the screen.

1) Setting of keylock (Group 8-1)
Disp ret: 60 s

Setting range: OFF, Lock1, Lock2, Lock3
Initial value: OFF
Inital value. OFF

In order to avoid an unintended data change by erroneous operation, a keylock selected one from Lock1, Lock2 and Lock3 is applied. When locked, each of the affected LCD screens shows the mark on the top left. (The keylock parameter is not locked, though.)

Lock1. \qquad Parameters except SV, AT, MANUAL and STANBY are locked.
Lock2. Parameters except SV are locked.
Lock3. All parameters are locked.
(For more details, see the list of parameters in Chapter 10.)
2) Setting of screen return time (Group 8-1)

| Key lock: | OFF |
| :--- | ---: | :--- |
| Disp ret | 60 s |
| Inital $:$ | None |
| | |

Setting range: OFF, $10 \sim 120 \mathrm{sec}$.
Initial value: 60 sec .

This is the function to automatically return to the initial screen of the monitor group $(0-0)$ when none of the keys are operated during a screen return time set. (This will not function in the screens of Group 0-1 and 0-2.)
3) Setting of initialization (Group 8-1)

| Key lock: | OFF |
| :--- | ---: | :--- |
| Disp ret: | 60 s |
| Inital $\boldsymbol{\square}$ | None |

Setting range: None, Exe1, Exe2
Initial value: None

This is the function to return registered set data to its initial value.

None: No initialization.
Exe1: Only the parameters shown in the following Table 1 are initialized. (For more details, see the list of parameters in Chapter 10.) Exe2: All the parameters of each group are initialized.

Table 1 Parameters to be initialized by selecting Exe1

CONTROL Group (Group 1)	SV/Remote/Ramp group (Group 2)	PID group (Group 3)	EVENT/DO group (Group 4)
Auto Tuning AT Point Control A/M Ramping Run	$\left.\begin{array}{l} \text { Each SV value } \\ \text { SV Limt_L } \\ \text { SV Limt_H } \\ \text { REM Bias } \\ \text { REM Filt } \\ \text { REM Sc_L } \\ \text { REM Sc_H } \end{array}\right\} \text { Note } 1$	$\begin{gathered} \text { All parameters except } \\ \mathrm{m}_{2} \mathrm{O}_{1} \text { Lmt_L, } \\ \mathrm{m}_{2} \mathrm{O}_{1} \text { Lmt_H, } \\ \mathrm{m}_{2} \mathrm{O}_{2} \text { Lmt_L, } \\ \mathrm{m}_{2} \mathrm{O}_{2} \text { Lmt_H, } \\ \mathrm{m}=1 \sim 10 \end{gathered}$	Set point of each EVENT/DO Diffrntl of each EVENT/DO

OPTION group (Group 5)	OPTION group (Group 6)	UNIT/RANGE group (Group 7)	LOCK/INIT group (Group 8)
Ao1 Sc_L	None	PV Bias	None
Ao1 Sc_H		PV Filt	
Ao2 Sc_L			
Ao2 Sc_H			

Note 1: In case CTRL is selected in 6-7. 7) Setting of remote mode, these are not initialized even when Exe1 is executed.
4) Setting of mode (Group 8-2)
$\left.\begin{array}{|lll|}\hline \text { MODE }\left[\begin{array}{lll} & 3 \\ \text { OUT } & {[} & \text { Dual }\end{array}\right] \\ \text { SV } & {[} & \text { Multi }\end{array}\right]$

Setting range:	One output type: Modes 0 and 2 (Modes 1 and 3 are not displayed)
	Two output type: $\operatorname{Modes} 0,1,2$ and 3
Initial value:	One output type: Mode 2
	Two output type: Mode 3

For selection from Modes 0 to 3, consult the following table showing control output, the number of SV setting points and whether or not ramp control is engaged.

	Control output (OUT)	Set value (SV)	Ramp control (RAMP)
MODE 0	Singl (1 output)	Singl (SV No.1, Remote SV)	-------- (Unusable)
MODE 1	Dual $(2$ outputs)	Singl (SV No.1, Remote SV)	-------- (Unusable)
MODE 2	Singl $(1$ output)	Multi (SV No.1~10, Remote SV)	Up/Down (Usable)
MODE 3	Dual (2 outputs)	Up/Down (Usable)	

Note 1: No change of mode is possible during the execution of AT or ramp control.

6-2. Unit/Measuring range group (Group 7)

(In this group, LCD screen configuration differs depending on the type of input.)
Call the UNIT/RANGE screen (Group 7-0) by the use of the G R mey and press the SCRN key to move to a screen in which setting or a change is to be made. Use the \square key to select a parameter on the screen.

The screen configuration for each of the input types is shown below:

1) Setting of the PV bias (Group 7-1)

PV Bias	$0.0{ }^{\circ} \mathrm{C}$
PV Filt:	OFF
RTD Type:	Pt100

Setting range: -9999~9999 unit Initial value: 0 unit

PV bias is the function of correcting the PV value display, that is, an error due to a sensor, instrument or the like is corrected so that the PV value comes in accord with a control temperature display, not an actual temperature display.
2) Setting of the PV filter (Group 7-1)

PV Filt	OFF
RTD Type:	Pt100

Setting range: OFF, 1~300 Initial value: OFF

If a noise is included in the PV input, it may adversely affect control results due to the unsteadiness of the PV display. The PV filter is used to reduce such an effect and to stabilize control.

Filter operation is carried out by linear delay operation.

Time constant $\mathbf{T}(\mathrm{sec})=$. set value \times sampling cycle (sec.) of the PV input

From the above equation, $\mathrm{T}=300 \times 0.2=60 \mathrm{sec}$.
Thus, the PV filter with a time constant of 60 sec . maximum can be applied. Accordingly, the larger the set value, the longer the time constant and the more effectively noise can be removed.
It should be noted, however, that too large of a time constant may sometimes have a detrimental effect on the result of control in a highly responsive control system.
3) Setting of R.T.D. type (Group 7-1)
(This setting is only for R.T.D. input. The screen is not displayed in the case of TC or linear input.)

PV Bias:	$0.0{ }^{\circ} \mathrm{C}$
PV Filt:	OFF
RTD Type】	Pt100

Setting range: JPt100, Pt100
Initial value: Pt100

Selection between Pt100 and JPt100 as the type of sensor R.T.D. used for input is made.
4) Setting of reference junction compensation (Group 7-1)
(This setting is only for TC input. The screen is not displayed in the case of R.T.D. or linear input.)

PV Bias:	$0.0{ }^{\circ} \mathrm{C}$
PV Filt:	OFF
CJ Compl	INTER

Setting range: INTER, EXTER
Initial value: INTER

Selection is made as to whether reference junction compensation is carried out internally or externally. Usually, it is done in the instrument but it should be done externally if higher accuracy is required.
5) Setting of measuring unit (Group 7-2)

The unit of input is set.
Note 1: When this parameter setting is changed, Exe1 as an initialization setting is automatically brought into execution.
Note 2: In the case of TC input, changing from ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ to K automatically brings the range to 18.
Note 3: In the case of TC input, changing from K to ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ automatically brings the range to 6 .
6) Setting of rounding of lowest decimal place (Group 7-2)
(This setting is only for TC or R.T.D. input. The screen is not displayed in the case of linear input.)

Unit : ${ }^{\circ} \mathrm{C}$		
Figur	YES	
Range:	14	
[0.0	\sim	200.0

Setting range: YES, NO
Initial value: YES

Whether or not to leave the lowest decimal place of set measuring range can be chosen by this setting. If your measuring range does not have functions, this function is of no use.

Figur: YES \qquad The number of display digits remains exactly as the set measuring range.
Figur: NO The lowest decimal place of display digits set as the measuring range is rounded.

Note 1: A change in this parameter setting automatically brings Exe1 as the initialization setting into execution.
7) Setting of range (Group 7-2)

Unit :	${ }^{\circ} \mathrm{C}$		
Figur:	YES		
Range	14		
$\left[\begin{array}{lllll} & 0.0 & \sim & 200.0 &] \\ \hline\end{array} \mathrm{l}\right.$			

A measuring range is selected from the following table.

Note 1: A change in this parameter setting automatically brings Exe1 as the initialization setting into execution.

- Thermocouple input

Range No.	Type of input	Measuring range			
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	K	
1	B	$0.0 \sim 1800.0$	$0 \sim 3300$		
2	R	$0.0 \sim 1700.0$	$0 \sim 3100$		
3	S	$0.0 \sim 1700.0$	$0 \sim 3100$		
4	K	$-100.0 \sim 400.0$	-150.0 ~ 750.0		
5	K	$0.0 \sim 400.0$	$0.0 \sim 750.0$		
6	K	$0.0 \sim 800.0$	$0.0 \sim 1500.0$		
7	K	$0.0 \sim 1200.0$	$0.0 \sim 2200.0$		
8	K	$-200.0 \sim 200.0$	$-300.0 \sim 400.0$		
9	E	$0.0 \sim 700.0$	$0.0 \sim 1300.0$		
10	J	$0.0 \sim 600.0$	$0.0 \sim 1100.0$		
11	T	-200.0------200.0	-300.0-------700.0		
12	N	$0.0 \sim 1300.0$	$0.0 \sim 2300.0$		
13	PL II	$0.0 \sim 1300.0$	$0.0 \sim 2300.0$		
14	PR40-20	$0.0 \sim 1800.0$	$0-3300$		
15	WRe5-26	$0.0 \sim----700$	$0-----7200$		
16	U	-200.0 ~ 200.0	-300.0----400.0		
17	L	0.0-~- 600.0	0.0--		
18	K			$10.0{ }^{-1}$	350.0
19	Gold iron /chromel	-	-	0 ~	350.0

Initial value: Range No. 6
(K thermocouple 0.0~ $800.0^{\circ} \mathrm{C}$)
Note 2: In the case of B thermocouple, accuracy is not guaranteed at temperatures below $400^{\circ} \mathrm{C}$ ($750^{\circ} \mathrm{F}$).
Note 3: The precision for PR40-20 is $\pm\left(0.3 \% \mathrm{FS}+1^{\circ} \mathrm{C}\right)$
Note 4: The precision for K thermocouple (Kelvin) is $10.0 \sim 30.0 \mathrm{~K}: \pm(0.75 \%$ FS +1 K) $30.0 \sim 70.0 \mathrm{~K}: \pm(0.30 \% \mathrm{FS}+1 \mathrm{~K})$ 70.0~350.0 K: $\pm(0.25 \%$ FS+1K)
Note 5: The precision for the gold iron/chromel thermocouple is $\pm(0.25 \%$ FS +1 K)

- R.T.D. (Pt100/JPt100)

Range No.	Type of input	Measuring range				Initial value: Range No. 14 (Pt100 0.0~200.0${ }^{\circ} \mathrm{C}$) Note 6: The precision of $50^{\circ} \mathrm{C}\left(120^{\circ} \mathrm{F}\right)$ span input is $\pm 0.2 \% \mathrm{FS}$.
			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
1	Pt100	-200.0	~ 600.0	-300.0	~ 1100.0	
	(JPt100)	-200.0	~ 500.0	-300.0	~ 900.0	
2		-100.00	\sim	-150.0	----200.0	
3		-100.0	~-100.0	-150.0	- 200	
4		-100.0	--300.0	-150.0	----600.0	
5		-60.00	~-40.00	-80.00	~- 100.00	
6		-50.00	~-- 50.00	-60.00	~ 120.00	
7	Common to	-40.00	~--60.00	-40.00	~--140.00	
8	Common to Pt100 and	-20.00	~-80.00	0.00	~- 180.00	
9		0.000	~-50.000	0.00	~- 120.00	
10		0.00	~--50.00	0.00	~--120.00	
11		0.00	~-100.00	0.00	\sim	
12		0.0	~--100.0	0.0	-- 200.0	
13		0.00	--200.00	0.0	----400.0	
14		0.0	---200.0	0.0	----400.0	
15		0.0	-- 300	0.0	----600.0	
16	Pt100	0.0	~ 500.0	0.0	~ 1000.0	
	(JPt100)	0.0	~ 500.0		~ 900.0	

- Linear input (current or voltage)

Range No.	Voltage (mV)	Current (mA)	Voltage (V)
1	-10 ~ 10	-	$-1 \sim 1$
2	$0 \sim 10$		$0 \sim 1$
3	0-20		$0-2$
4	0-----50	0------20	$0---5$
5	$10 \sim 50$	4 ~- 20	$1 \sim \sim$
6	$0-\mathrm{\sim}-100$		0-----10
7	$-100----100$	-	$-10^{\sim------1}$

Initial value: Voltage (mV) input; Range No. $2(0 \sim 10 \mathrm{mV}$)
Current (mA) input; Range No. 5 (4~20mA)
Voltage (V) input; Range No. 6 ($0 \sim 10 \mathrm{~V}$)
8) Setting of decimal point (Group 7-3)
(This setting is only for linear input. This screen is not displayed for R.T.D. or TC input.)

PV D.P. \boldsymbol{Z}	XXXX.X
PV SC_L:	$0.0{ }^{\circ} \mathrm{C}$
PV	Sc_H:
	$100.0{ }^{\circ} \mathrm{C}$

Setting range: $\mathrm{XXXXX} \sim \mathrm{X}$. XXXX
PV Sc_L: $\quad 0.0^{\circ} \mathrm{C}$
Initial value: XXXX. X

In the case of voltage or current input, the position of decimal point in the PV display screen is set.
9) Setting of PV scaling (Group 7-3)
(This setting is only for linear input. This screen is not displayed for R.T.D. or TC input.)

PV D.P.:	XXXX.X
PV SC_L	$0.0{ }^{\circ} \mathrm{C}$
PV SC_H:	$100.0{ }^{\circ} \mathrm{C}$

PV D.P.:	XXXX.X
PV Sc_L:	$0.0^{\circ} \mathrm{C}$
PV Sc_H】	$100.0^{\circ} \mathrm{C}$

Selectable range : -19999~26000 unit
Measuring range : Minimum span 100 unit
Maximum span 25000 unit
Within the above range, any can be set ($\mathrm{Sc} _\mathrm{L}<\mathrm{Sc} _H$ should be satisfied, though).
Initial value: Sc_L ; 0 unit
Sc_H; 1000 unit

In the case of voltage or current input, set a measuring range (scaling).
Note 1: Changing this parameter automatically brings Exe1 of initialization into execution.

6-3. Output group (Group 6)

Press the G R P key to call the OUTPUT screen (Group 6-0) and press the SCRN key to move to a screen in which a setting or a change is to be made. Use the \sim key for selecting a parameter on the screen.

1) Set of output characteristics (direct action/reverse action) (Group 6-1)

Out Actn】Rev Act. Out1 Cyc:	3 s
Out2 Cyc:	30 s

Setting range: Dir Act., Rev Act. Initial value: Rev Act.

For control action characteristic of control output, Dir Act or Rev Act can be selected.
\square When the instrument is of one output type and MODE 0 or MODE 2 has been selected in 6-1.4) Setting of mode:
Rev Act (reverse action): In this action, the higher the measured value (PV) than the set value (SV), the lower the output becomes. This action is generally used for heating control.
Dir Act (direct action): The higher the measured value (PV) than the set value (SV), the higher the output becomes. This action is generally used for cooling control.

\square When the instrument is of the two-output type and MODE 1 or MODE 3 has been selected in 6-1.4) Setting of mode:
Rev Act (reverse action): Output 1 is for heating control and Output 2 is for cooling control.
Dir Act (direct action): Both Output 1 and Output 2 are for heating control (2-stage heating).

Note 1: For DB in the above diagram for Dir Act, refer to 6-6.7) Setting of dead band.
Note 2: To switch output characteristics is not possible during the execution of auto tuning (AT) or ramp control.
2) Setting of output cycle (Group 6-1)
(This setting is only for contact or SSR drive voltage output. This screen is not displayed in the case of voltage or current output.)

Out Actn:	Rev Act.
Out1 Cyc	3 s
Out2 Cyc:	30 s

Setting range: 1~200 sec.
Initial value: In the case of SSR drive voltage output; 3 sec .
In the case of contact output; 30 sec .

```
Out Actn: Rev Act.
Out1 Cyc: 3
Out2 Cyc\ 30 s
```

For SSR drive voltage output, control is carried out through voltage pulse and for contact output through ON and OFF time ratio (duty) of relay contact. Cycle time, which is the basic cycle of the duty, can be set.

Note 1: Generally, cycle time is $20 \sim 30 \mathrm{sec}$. in the case of contact output, and $2 \sim 4 \mathrm{sec}$. in the case of SSR drive voltage output.
Note 2: If an excessively long time is set for cycle time in a control system with a short delay time, an adverse effect may be produced on the result of control.
Note 3: In the case of one output, the parameter Out 2 Cyc is not displayed on the screen.
Note 4: Output cycle cannot be set during the execution of auto tuning (AT) or ramp control.
3) Setting of output against Scale Over (Group 6-2)

| Err Out1】 | 0.0% |
| :--- | :--- | :--- |
| Err | Out2: |
| | 0.0% |

Setting range: -5.0~105.0\%

Err Out1: 0.0 \%
Err Out2】 0.0 \%

Control output value for use when measured input value goes out of range can be set.
Note 1: In the case of one output, the parameter Err Out 2 is not displayed on the screen.
Note 2: Output against Scale Over cannot be set during the execution of auto tuning (AT).
Note 3: For contact and SSR drive voltage output, output against Scale Over automatically becomes 0% if $\mathrm{P}=\mathrm{OFF}$ is set and ON-OFF control is selected in 6-6. 1) Setting of proportional band (P).

6-4. Option group (Group 5)

[This group has setting screens of optional functions (analog output, DI, heater break alarm and communication). These screens are not shown if the optional functions are not added in your instrument.)]

Press the G R P key to call the OPTION screen (Group 5-0) and move to a screen in which setting or a change to be made by the use of the SCRN key. Use the \rightarrow key for selecting a parameter on the screen.

- Matters Related to the Setting of Analog Output

1) Setting of analog output assignment (Group 5-1~2)

Ao1	Mode】	PV
Ao1	Sc_L:	$0.000^{\circ} \mathrm{C}$
Ao1	Sc_H:	$50.000^{\circ} \mathrm{C}$

Measuring range: PV, SV, DEV, OUT1, OUT2
Initial value: Analog output 1; PV
Analog output 2; SV

Ao2	Mode】	SV
Ao2	Sc_L:	$0.000{ }^{\circ} \mathrm{C}$
Ao2	Sc_H:	$50.000{ }^{\circ} \mathrm{C}$

The following can be assigned to analog outputs 1 and 2 .

1. PV (measured value)
2. SV (set value)
3. DEV (deviation)
4. OUT 1 (control output 1)
5. OUT 2 (control output 2) [Only when the instrument is of the two output type]

Note 1: Analog output is produced even when STANBY has been selected in 6-8. 4) Execution/standby of control. Note 2: In the instrument with one analog output, the Ao2 parameters are not shown on the screen.
2) Setting of analog output scaling (Group 5-1~2)

Ao1	Mode:	PV
Ao1	Sc_LD	0.000
	${ }^{\circ} \mathrm{C}$	
Ao1	Sc_H:	$50.000^{\circ} \mathrm{C}$

Setting range: Shown in the following table. Initial value: Shown in the following table.

Ao1	Mode:	PV
Ao1	Sc_L:	$0.000{ }^{\circ} \mathrm{C}$
Ao1	Sc_HD	$50.000^{\circ} \mathrm{C}$

Scaling of analog outputs 1 and 2 can be set.

Mode	Setting range	Initial value
PV	Within measuring range	Sc_L: Lower limit value of measuring range Sc_H: Higher limit value of measuring range
SV	Within measuring range	Sc_L: Lower limit value of measuring range Sc_H: Higher limit value of measuring range
DEV	$-100.0 \sim 100.0 \%$	Sc_L: -100.0\% Sc_H: 100.0%
OUT1	$0 \sim 100.0 \%$	Sc_L: 0\% Sc_H: 100.0%
OUT2	$0 \sim 100.0 \%$	Sc_L: 0% Sc_H: 100.0%

Both Sc_L < Sc_H and Sc_L > Sc_H are allowed only when Sc_L = Sc_H.

Note 1: In the instrument with one analog output, the parameters Ao2 Sc_L and Ao2 Sc_H are not shown on the screen.

© Matters Related to Setting of DI

3) Setting of DI assignment (Group 5-3)

DI1】 NOP	$[$ OFF $]$
DI2: NOP	$[$ OFF $]$
DI3: NOP	$[$ OFF $]$
DI4: NOP	$[O F F]$

Measuring range: 8 types as shown in the following table Initial value: DI1~4; NOP

For the purpose of carrying out external control by means of no-voltage contact signals externally, actions to be executed can be selected from the following 8 types and may be assigned to DI1 through 4 :

Type	Description of action	When not in operation	Signal detection
Nop	No	-	Level
Manual	Switching control output between auto and manual (ON: Manual)	AT, STB	Level
Remote	Setting REM SV/changing LOC SV setting (ON: REM SV set)	AT	Level
Auto Tune	Switching ON/OFF of AT (ON "edge": AT execution)	MAN, STB, RUN, REM	Edge
Stanby	Switching execution/pause of control (ON: pause)	None	Level
Dir Act.	Switching direct/reverse action of output characteristics (ON: Direct action)	AT, RUN	Level
Stop	Switching pause/restart of ramp control (ON: Pause in ramp control) (Only during execution of ramp control)	-------------	Level
Direct	Switching ON/OFF of EV and DO output (ON: EV and DO outputs ON) (For details, see the explanation of "Direct" below.)	None	Level

Note 1: "When not in operation" :
When items shown in these columns are in operation, those shown in the "Description of action" columns are unable to be brought into execution by external control. The same applies to front key operation.
Note 2: Timing of detection of external control input signals :
Level input: Action continues while the contact is ON
Edge input: When a contact is ON for 0.3 seconds or longer, its action starts, and continues after the contact is OFF. When it turns ON and remains for 0.3 seconds or longer again, the action is stopped.
Note 3: External control input may not be detected unless ON or OFF continues for 0.3 seconds or longer.
Note 4: Once items selected from the above 8 types are assigned to DIs, external control takes preference, that is, similar types of setting by front key operation are not possible.
Note 5: In case a similar type of action is assigned to two or more DIs, only the assignment to DI with the smallest number is valid. (For example, if Manual is assigned to DI1 and DI2, the assignment to DI2 is invalid.)
Note 6: Assignment of any action except Direct to a DI maintains the action even after the setting of the DI is released. (For example, if Stanby is assigned to DI1 and DI1 is set at Nop by external signal in this state, Stanby still works.

* When you want to execute external control upon completion of setting, follow the instruction in Chapter 7 External Control Input/Output.

Notes on Direct Function:

DI or communication signals can be output to an Event and DO.
Fig. 1 shows relations between DIs and Events/DOs.
(For communication, refer to the separate Instruction Manual on Communication Interface.)

Requirements for use of direct function:

1. Assign Direct to a DI^{*} to be input.
2. Assign Direct to EV^{*} and DO^{*} to be output.

$$
*\left\{\begin{array}{l}
\mathrm{DI} \rightarrow 1 \sim 4 \\
\mathrm{EV} \rightarrow 1 \sim 3 \\
\mathrm{DO} \rightarrow 1 \sim 4
\end{array}\right.
$$

Fig. 1 Relations between DIs and Events/DOs

Example of use of Direct function:

If you want to output DI signal to EV3, as illustrated in Fig. 1, the DI input which can be output to EV3 is DI3.
(1) Assign Direct to DI3. (See 6-4.3) Setting of DI assignment.)
(2) Assign Direct to EV3. (See 6-5. 1) Setting of event action and DO action mode.)
(3) When input to DI3 is turned ON/OFF, EV3 output turns ON/OFF. (See Chapter 7 External Input/Output.)

© Matters Related to Setting of Heater Break Alarm

4) Display of CT current (Group 5-4)
(Heater break alarm and heater loop alarm are usable when control output 1 is of contact (Y) or SSR drive voltage (P). They cannot be used if control output 1 is of current (I) or voltage (V).)

\downarrow	
CT Current	[
HBA Curr	O.0A]
HLA Curr:	OFF
HA Mode :	LOCK

Display range: $0.0 \sim 54.9 \mathrm{~A}$

This screen shows current detected by the current detector (CT).

- When current detected by CT exceeds $55.0 \mathrm{~A}, \mathrm{HB} _$HH is shown in the CT current display screen.
- When current detected by CT lowers to 0.0A or below, HB_LL is shown in the CT current display screen.
- In the event CT fails to detect any current, ----- is shown in the CT current indication screen.

\square Connection of current transformer (CT)

Pass a load wire through the hole of CT, which is provided as an attachment to the instrument. The wire from CT to temperature controller (SR253) has no polarity.

5) Setting of current value for the heater break alarm (Group 5-4)

CT Current	[
HBA Curr	
10.0A]	OFF
HLA Curr:	OFF
HA Mode :	LOCK

Setting range: OFF, $0.1 \sim 50.0 \mathrm{~A}$
Initial value: OFF

CT detects the current level in the load wire while control output 1 is ON, and it judges as abnormality and outputs an alarm whenever a lower current level than set current value is detected. Even if control output 1 turns OFF, the alarm output is maintained.

Note 1: To use the heater break alarm, it is necessary to assign HBA to an event or external output in 6-5. 1) Setting of event action and DO action mode.
6) Setting of current value for the heater loop alarm (Group 5-4)

CT Current	[
HBA Curr:	OFF
HLA Curr	OFF
HA Mode :	OOCK

Setting range: OFF, $0.1 \sim 50.0 \mathrm{~A}$
Initial value: OFF

CT detects the current level in the load wire while control output 1 is OFF, and it judges as abnormality and outputs an alarm whenever a higher current level than set current value is detected. Even if it turns ON, the alarm output is maintained.

Note 1: To use the heater break alarm, it is necessary to assign HLA to an event or external output in 6-5. 1) Setting of event action and DO action mode
7) Setting of the heater break/loop alarm mode (Group 5-4)

CT Current	[
HBA Curr:	OFF
HLA Curr:	OFF
HA Mode	LOCK

Setting range: LOCK, REAL Initial value: LOCK

You can select either the lock mode or the real mode for alarm output.
Lock mode (LOCK): Once alarm is output, the alarm output is locked (fixed) and the alarm keeps being output even if the CT current level returns to normal. The alarm output cannot be turned off unless OFF is set for alarm current value or power is turned off.
Real mode (REAL): If CT current level returns to normal while alarm is being output, the alarm output will automatically turn off.

○ Matters Related to Setting for Communication Environment
8) Communication-related setting (Group 5-5 A/B)

COMM[RS-422A]
Add】01
BPS: 19200 DATA: 8E1
$\downarrow_{\text {Mode }}$ Standard

MEM \boldsymbol{Z} RAM
CTRL: STX-ETX-CR
BCC : Add
DELY: 40

For communication-related setting, see the separate Instruction Manual on Communication Interface.

6-5. Event/DO group (Group 4)

(The screens of this group are not displayed when EV and DO are not set as optional on the screens concerned.)

* On the description of each setting, explanation is made on EV but this explanation applies to DO as well.

Press the G R P key to call the EVENT/DO screen (Group 4-0) and move to a screen in which setting or a change is to be made by the use of the SCRN key. Use the key for selecting a parameter on the screen.

1) Setting of event action and DO action mode (Group 4-1A~4-8A)

Setting range: 19 types listed below (Nevertheless, HBA and HLA can be set only when the instrument has the optional function of heater break alarm.

| | Initial value: | Type of event EV 1 EV 2 EV 3 DO 1 DO 2 DO 3 DO 4
 Initial value DEV High DEV Low Scale Over
 HBA (When
 HB is equipped) Auto
 Tuning Manual Remote
 RUN Stanby | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

In the event action and DO action mode, there are the following 19 events which are possible to monitor. In this screen, events selected from them are assigned to event and external outputs.
\square Types of Events
(1) DEV High : Higher limit deviation value action
(2) DEV Low
(3) DEV Outside : Action outside higher/lower limits of deviation
(4) DEV Inside : Action inside higher/lower limits of deviation
(5) PV High
(6) PV High
(7) SV High
(8) SV Low
9) Auto Tuning
(10) Manual
(11) Remote
(12) Run
(13) Stanby
(14) Scale Over
(15) PV Scale Over

PV higher limit absolute value action
: PV lower limit absolute value action
: SV higher limit absolute value action
: SV lower limit absolute value action
: While auto tuning in action ON
While manual control in action ON
While remote control in action ON
While ramp control in action ON
While control action is off ON
When PV and REM get out of range ON
: When PV gets out of range ON
(16) REM Scale Over : When REM gets out of range ON
(17) Direct : During direct output ON
(18) HBA : During output of heater break alarm ON (option)
(19) HLA : During output of heater loop alarm ON (option)

Note 1: In the above diagrams, ON and OFF mean that the respective actions are activated or not. Nevertheless, the back output differs depending on Open or Close selected in 6-5. 6) Setting of output characteristics.
Note 2: In case a type of event is changed, parameters of set action point (Set Point), action hysteresis (Diffrntl), delay time (Delay), inhibit action (Inhibit), and output characteristics (Charact) are initialized.
2) Setting of action point (Group 4-1A~4-8A)
(The setting is required only when any of the event types (1)~(8) is set for event action and DO action modes. When any of the event types (9) $\sim(19)$ is set, these screens are not displayed.)

EV 1	Setting range:	DEV High	; 0~25000 unit	Initial value:	DEV High	; 25000 unit
Mode: DEV High	Setting range:	DEV Low	; -25000~0 unit		DEV Low	; -25000 unit
Set Point $25.000{ }^{\circ} \mathrm{C}$		DEV Outside	; 0~25000 unit		DEV Outside	; 25000 unit
$\downarrow^{\text {Diffrnt }}$: $0.020^{\circ} \mathrm{C}$		DEV Inside	; 0~25000 unit		DEV Inside	; 25000 unit
		PV High	; Within measuring range		PV High	; Higher limit value of measuring range
		PV Low	; Within measuring range		PV Low	; Lower limit value of measuring range
		SV High	; Within measuring range		SV High	; Higher limit value of measuring range
		SV Low	; Within measuring range		SV Low	; Lower limit value of measuring range

In this screen, action points of event output and external output are set.
$\left.\begin{array}{l}\left.\begin{array}{l}\text { DEV High } \\ \text { DEV Low } \\ \text { DEV Outside } \\ \text { DEV Inside }\end{array}\right\} \quad \text { Deviation value input }\end{array} \begin{array}{l}\text { PV High } \\ \text { PV Low } \\ \text { SV High } \\ \text { SV Low }\end{array}\right\}$ Absolute value input

In the case of DEV Outside or DEV Inside, inputting a positive deviation value and setting a positive action point automatically sets a negative action point to form a range of action points.

3) Setting of action hysteresis (Group 4-1A~4-8A)
(The setting is required only when any of the event types (1) $\sim(8)$ is set for event action and DO action. When any of the event types (9) (19) is set, these screens are not displayed.)

EV 1	
Mode:	DEV High
Set Point :	$25.000^{\circ} \mathrm{C}$
$\downarrow_{\text {Diffrnt }} \boldsymbol{\square}$	$0.020^{\circ} \mathrm{C}$

Setting range: 1~9999 unit Initial value: 20 unit

Setting an action hysteresis between ON action and OFF action can avoid chattering and the like and ensure stable event action.

Example: When PV is Low

4) Setting of delay time (Group 4-1B~4-8B)
(The setting is required only when any of the event types (1) $\sim(8)$ is set for event action and DO action modes. When any of the event types (9) $\sim(19)$ is set, these screens are not displayed.)

EV 1	
Delay \quad OFF	
Inhibit:	OFF
Charact:	Open

Setting range: OFF, 1~9999 unit
Initial value: OFF

Once a delay time is set, when a factor requiring output of ON signal to event and DO outputs arises, ON signal is output not immediately but only after a certain time (delay time) elapses.

Note 1: In case the factor for signal output disappears within the delay time, the delay time is cleared without outputting ON signal. If the factor arises again, the time count is redone from the beginning.
Note 2: When OFF is set for delay time, signal is output simultaneously with the occurrence of a factor for ON signal output
Note 3: Delay time can be changed within delay time after occurrence of a factor for ON signal output. Nevertheless, delay time is counted from the occurrence of the output factor, not from the time at which the change is made. (See the following examples.)

Example 1: Delay time set at 15 S .
Changed to 10S when 5S has elapsed after the occurrence of factor.

Example 2: Delay time set at 15 S .
Changed to 20S when 5S has elapsed after the occurrence of factor.

5) Setting of inhibit action (Group 4-1B~4-8B)
(The setting is required only when any of the event types (1) $\sim(8)$ is set for event action and DO action modes. When any of the event types (9) $\sim(19)$ is set, these screens are not displayed.)

EV 1	
Delay : OFF Inhibit OFF Charact: Open	Initial value: OFF

When you set inhibit action, select ON or OFF by taking the event action for Scale Over as well as inhibit action.

- Inhibit: ON \rightarrow With inhibit action

Note 1: The event action turns ON when Scale Over occurs on the event setting side.

- Inhibit: OFF \rightarrow Without inhibit action

Note 2: Event action turns OFF when Scale Over occurs on the event setting side.
Note 3: If you want to output alarm when Scale Over occurs after setting Inhibit: OFF, assign Scale Over to other event or DO.

On Inhibit Action:
It is possible to keep ON signal waiting if PV value is in the ON range of event action when power is applied or STANBY is released, and to output ON signal when the PV value returns to the OFF range of event action and then enters the ON range of event action.

Example: PV Low has been assigned to EV1 and Inhibit:ON has been set:

Note 4: Inhibit action gets on when power is applied or STANBY is released, and remains off at any time other than the above.
Note 5: If PV value is in the ON range of event action when power is applied or STANBY is released and setting of inhibit action is changed to Inhibit:OFF, the inhibit action is canceled immediately and ON signal is output.
Note 6: If PV value is in the OFF range of event action when power is applied or STANBY is released, inhibit action is canceled.
6) Setting of output characteristics (Group 4-1B~4-8B)
(The setting is required only when any of the event types (1)~(8) are set in event action and DO action modes. When any of the event types (9)~(19) are set, these screens are not displayed.)

EV 1	
Delay :	OFF
Inhibit:	OFF
Charact	Open

Setting range: Open, Close
Initial value: Open

Output characteristics of event and DO outputs can be selected between Open (Normal open) and Close (Normal close).

Open (Normal open): When event is out of action, the contact remains open. When DO is out of action, the output transistor is in an inactive state.
Close (Normal close): When event is out of action, the contact remains closed. When DO is out of action, output transistor is in an active state.

6-6. PID group (Group 3)

(The configuration of this group differs depending on whether the instrument has one output or two outputs as control output.)
\checkmark As this instrument can work with multi-PIDs corresponding to multi-SVs, PID constants can be registered at PID Nos. corresponding to SV Nos.
\diamond When the Auto Tuning (AT) function is used, PID values are set automatically. You need not set them. (Refer to 6-8. 1) Execution/stop of auto tuning.) Depending on the object of control, however, it may be required to correct PID values even when auto tuning is executed.

Press the G R P key to call the PID screen (Group 3-0). Next, press the SCRN key, and the screen with the PID No. currently being used is displayed. (This is only when the PID screen was called from any of the other screen groups. If you press the G R P key in any of the PID group screens and press the SCRN key, the screen of PID No. 1 is displayed.) Then, every time the SCRN key is pressed, the PID No. changes successively. Stop pressing when the screen of the PID No. to be set or changed is displayed. Use the \square key for selecting a parameter on the screen.

P_{1}, I_{1}, D_{1} : PID of output 1
P_{2}, I_{2}, D_{2} : PID of output 2

1) Setting of proportional band (P) (Group 3-1A~)

PID	1	$P_{1} 】$	3.0%
I1:	120 s	$\mathrm{Di}_{1}:$	30 s
MR:	0.0%		
$\downarrow_{\text {Zone }}:$	$0.0^{\circ} \mathrm{C}$		

Setting range: OFF, 0.1~999.9\%
Initial value: 3.0\%

A rate (\%) of a change in control output to measuring range is set. Control output changes in proportion to difference (deviation) between measured (PV) value and set (SV) value.
The wider the proportional band, the smaller the change in control output. The narrower the proportional band, the larger the control output.
Nevertheless, too narrow a proportional band causes control to oscillate (hunting), with the control result resembling ON-OFF action. When OFF is set for proportional band, ON-OFF control is carried out.

Note 1: When OFF is selected for P, auto tuning cannot be executed.
2) Setting of action hysteresis (DF) (Group 3-1A~)

PID	1	P1:
DF1】	$2.0^{\circ} \mathrm{C}$	OFF
$\downarrow_{\text {Zone }}:$	$0.0^{\circ} \mathrm{C}$	

Setting range: 1~9999 unit Initial value: 20 unit

Setting $\mathrm{P}=0$ (OFF) starts ON-OFF control. Setting action hysteresis (DF) between ON and OFF at that time works to avoid chattering or the like and to stabilize control.

3) Setting of integral time (I) (Group 3-1A~)

PID	1	P1:	3.0%
I1	120 s	$\mathrm{Di}_{1}:$	30 s
MR:	0.0%		
$\downarrow_{\text {Zone }}:$	$0.0^{\circ} \mathrm{C}$		

Setting range: OFF, 1~6000 sec.
Initial value: 120 sec .

This is the function to correct offset (constant deviation) caused by proportional action. The longer the integral time, the weaker the correcting action and vice versa. Nevertheless, too short an integral time causes integral hunting, with the control results showing oscillation.
4) Setting of differential time (D) (Group 3-1A~)

PID	1	P1:	3.0%
I1:	120 s	DID	30 s
MR:	0.0%		
$\downarrow_{\text {Zone }}:$	$0.0^{\circ} \mathrm{C}$		

Setting range: OFF, $1 \sim 3600 \mathrm{sec}$.
Initial value: 30 sec .

A change in control output is estimated; overshoot due to integration is suppressed; and stability of control is improved.
The shorter the differential time, the weaker the differential action and vice versa. If it is too long, however, the control result may oscillate.
Note 1: Even when auto tuning is executed with $D=O F F, D=O F F$ remains unchanged.
5) Setting of manual reset (MR) (Group 3-1A~)

PID	1	P1:	3.0%
In $_{1}:$	OFF	D1:	30 s
MR \boldsymbol{D}	0.0%		
$\downarrow_{\text {Zone }}:$	$0.0^{\circ} \mathrm{C}$		

Setting range: $-50.0 \sim+50.0 \%$
Initial value: 0.0% for 1 output type
-50.0% for 2 output type

This is the function to make correction manually while watching the result of controlling offset produced by carrying out control action with P or $\mathrm{P}+\mathrm{D}$ when OFF is set for I (integral time). If a value is set on the + side, the control result moves in the plus direction and it moves in the minus direction if a value is set on the - side. The amount of movement is in proportion to numerical value.

Note 1: Even when auto tuning is executed with I=OFF, I=OFF remains unchanged and the value of Manual Reset (MR) is automatically calculated and setting is made.
6) Setting of zone (Group 3-1A~)

PID	1	P1:	3.0%
II:	120 s	$\mathrm{Di}:$	30 s
MR:	0.0%		
\downarrow Zone \boldsymbol{y}	$0.0^{\circ} \mathrm{C}$		

Setting range: Within measuring range
Initial value: 0 unit

In this screen a zone required for the zone PID function is set for each PID No.

Zone PID function ...	When set value (SV) exceeds zones as illustrated below, this function automatically switches PID Nos. to be executed.

Note 1: When the same zone value is set for two or more PID Nos., the smallest PID No. is executed.
Note 2: To use the zone PID function, 6-6.9) Setting of zone hysteresis and 6-6. 10) Setting of zone PID mode should be carried out in addition to setting of zone.
7) Setting of dead band (Group 3-1B~)
(This setting is only for the two output type. The screen is not displayed in the case of one output.)

| PID | 1 | | |
| :---: | :---: | :---: | :---: | :---: |
| P2: | 3.0% | | |
| I2 $2:^{120 \mathrm{~s}}$ | D2: | 30 s | |
| $\downarrow_{\text {DB }} \boldsymbol{1 2 0}$ | $0.0^{\circ} \mathrm{C}$ | | |

Setting range: -20000~20000 unit
Initial value: 0 unit

To carry out two output control, by taking characteristics of the object of control and the energy-saving effect into account, action range of control output 2 can be set as shown in the following action characteristic diagrams.

Example: When MODE 1 or MODE 3 is selected in 6-1. 4) Setting of mode and Rev Act in 6-3. 1) Setting of output characteristics:

Example: When MODE 1 or MODE 3 is selected in 6-1. 4) Setting of mode and Dir Act in 6-3. 1) Setting of output characteristics:

8) Setting of output limit (Group 3-1C~)

1_O1	Lmt_L	0.0	$\%$
1_O1	Lmt_H:	100.0	$\%$
1_OO2	Lmt_L:	0.0	$\%$
1_O2	Lmt_H:	100.0	$\%$
1_O1	Lmt_L:	0.0	$\%$
1_O1	Lmt_H $\boldsymbol{1} 00.0$	$\%$	
1_O2	Lmt_L:	0.0	$\%$
1__O2	Lmt_H:	100.0	$\%$

Setting range: Lower limit value; -5.0~104.9\%
Higher limit value; -4.9~105.0\%
(Lower limit value < Higher limit value, though)
Initial value: Lower limit value; 0%
Higher limit value; 100\%

In this screen, lower and higher limits of control output values corresponding to PID Nos. are set.

Note 1: In case the instrument is of the one output type, parameters related to two outputs are not shown.
Note 2: For Contact and SSR drive voltage output, output limits become invalid in case OFF is selected in 6-6. 1) Setting of proportional band (P) for ON-OFF control.
9) Setting of zone hysteresis (Group 3-11)

Zone HYSD	$2.0^{\circ} \mathrm{C}$
Zone PID:	Singl
REM PID:	01
SF:	0.40

Setting range: 0~10000 unit
Initial value: 20 unit

For set zone values, the following hysteresis can be set. This hysteresis applies to all the set zone values, however.

10) Setting of zone PID mode (Group 3-11)

Zone HYS:	$2.0^{\circ} \mathrm{C}$
Zone PID	Singl
REM PID:	01
SF:	

Setting range: Singl, Zone
Initial value: Singl

The PID function mode can be selected between Zone and Singl.
Zone \qquad Using the zone PID function (SV No. remains unaffected.)
Singl .Not using the zone PID function (PID No. is switched correspondingly to SV No.)
11) Setting of remote PID No. (Group 3-11)

Zone HYS:	$2.0^{\circ} \mathrm{C}$	
Zone PID:	Singl	
REM PID	01	
SF:		0.40

Setting range: $1 \sim 10$
Initial value: 1

Remote PID corresponding to remote SV can be changed from PID Nos. 1 through 10. The setting does not work, however, in case PID function is being used.
12) Setting of target value function (Group 3-11)

Zone HYS:	$2.0^{\circ} \mathrm{C}$
Zone PID:	Singl
REM PID:	01
SF	

Setting range: $0.00 \sim 1.00$
Initial value: 0.40

If set value is subjected to overshooting or undershooting during PID control, it is corrected by this function with reference to control results.
$\mathrm{SF}=0.00 \quad$: Ordinary PID operation is carried out
SF \rightarrow Small : Corrective function against overshooting works weakly.
$\mathrm{SF} \rightarrow$ Large : Corrective function against overshooting works strongly.

Note 1: Setting of a target value function is valid only when an integral action has been selected (PI or PID action).

6-7. SV/Remote/Ramp group (Group 2)

Press the G R P key to call SV screen (Group 2-0). Then press the SCRN key, and the screen of SV No. currently in use is displayed. (This functions only when the screen 2-0 has been called from another group. In case the G R P key is pressed in the same group to return to the initial screen of the group and the SCRN key is pressed, the screen of SV No. 1 is displayed.) The SV No. changes successively every time the SCRN key is pressed, thus moving to the screen of SV No. to be set or changed. Use the key for selecting a parameter in the screen.

○ Matters Related to SV Setting

1) Setting of set value (SV) (Group 2-1~)

Setting range: Within SV limits Initial value: 0 unit

Ten SV values maximum can be set suitably for your intended use.
Note 1: In case Mode 0 or 1 is selected in 6-1. 4) Setting of mode, only two items, SV No. 1 and Remote SV, are shown.
Note 2: Remote SV is only for monitoring; it cannot be set or changed by front key operation.
Note 3: To change SV value and to switch SV No. is not possible during execution of auto tuning (AT).
2) Setting of SV limits (Group 2-12)

| SV Limt_ID | $0.000^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| SV Limt_H: | $50.000^{\circ} \mathrm{C}$ |
| SV Select: | KEY |

SV Limt_H: $50.000{ }^{\circ} \mathrm{C}$
SV Select: KEY

Setting range: Within measuring range but SV Limt_L < SV Limit_H
Initial value: SV Limt_L; Lower limit value of measuring range SV Limt_H; Higher limit value of measuring range

```
SV Limt_L: 0.000 '
```



```
SV Select: KEY
```

Higher limit (SV Limt_H) and lower limit (SV Limt_L) of setting range for set value (SV) can be set.
Note 1: Remote SV value is also subject to SV limits.
3) Setting of selection/switch of multi-SV No. (Group 2-12)
(This screen is not displayed unless external input/output control signal (DI/DO) is added. When MODE 0 or MODE 1 has been selected in 6-1.4) Setting of mode, this screen is not displayed either.)

SV Limt_L:	$0.000^{\circ} \mathrm{C}$	
SV Limt_H:	$50.000^{\circ} \mathrm{C}$	
SV Select】	KEY	

Setting range: KEY, EXT
Initial value: KEY

It can be selected whether multi-SV No. is selected by means of front key (KEY) or externally (EXT).
\square When SV Select: KEY is set
Select SV No. by using front key in the monitor group screen (Group 0-0).
$\square \quad$ When SV Select: EXT is set (ESV lamp in front panel lights.)
Select SV No. externally.

© Matters Related to Remote Setting

4) Setting of remote bias (Group 2-13A)

Remote bias corrects error in remote set input value.
5) Setting of remote filter (Group 2-13A)

| REM Bias: | $0.000^{\circ} \mathrm{C}$ |
| ---: | ---: | ---: |
| REM Filt | OFF |
| REM Sc_L: | $0.000{ }^{\circ} \mathrm{C}$ |
| $\downarrow_{\text {REM Sc_H: }}$ | $50.000^{\circ} \mathrm{C}$ |

Setting range: OFF, 1~300
Initial value: OFF

If remote input has noise, unstable remote SV indication may produce an adverse effect on control result. A remote filter is used to reduce such effect and stabilize control.

Filter operation is carried by linear delay operation.

Time constant $\mathrm{T}(\mathrm{sec})=$. set value \times sampling cycle of remote input (sec.)

From the above equation, $T=300 \times 1 / 3=100 \mathrm{sec}$.
Thus, remote filter with a time constant of 100 sec . maximum is applied. Accordingly, the larger the set value, the longer the time constant and the more effectively noise can be removed.
It should be noted, however, that too large a time constant may have a detrimental effect on the result of control in highly rsponsive control system.
6) Setting of remote scale (Group 2-13A)

REM Bias:	$0.000{ }^{\circ} \mathrm{C}$
REM Filt:	OFF
REM Sc_L	$0.000^{\circ} \mathrm{C}$
\downarrow REM Sc_H:	$50.000^{\circ} \mathrm{C}$

Setting range: Within measuring range (RSV) 0.00~100.00\% (CTRL) but REM Sc_L \neq REM Sc_H
Initial value: REM Sc_L; Lower limit of measuring range (RSV) 0.00\% (CTRL)

REM	Bias:	$0.000{ }^{\circ} \mathrm{C}$
REM Filt:	OFF	
REM Sc_L:	$0.000^{\circ} \mathrm{C}$	
$\downarrow_{\text {REM }}$ Sc_H】	$50.000^{\circ} \mathrm{C}$	

Setting range of SV for remote set input can be set.
Note 1: For setting of remote scale when REM Mode:CTRL has been set, see 6-7. 7) Setting of remote mode.
7) Setting of remote mode (Group 2-13B)

REM Mode	RSV
REM Trck:	NO
REM P.B :	OFF
REM Time:	OFF

Setting range: RSV, CTRL
Initial value: RSV

There are the following two remote modes:

- RSV mode: Remote input is used as general RSV (remote SV) input.
- CTRL mode: Remote input is used as external control input.

In this mode, the following parameters need to be set:

Remote scale	(REM Sc_L, Sc_H)
Remote proportional coefficient	(REM P.B
Remote linear delay time	(REM Time)

On External Control (CTRL mode):
In the event there is a disturbance factor in the control system and the disturbance can be identified and be reflected in the control system beforehand, more accurate control can be achieved by taking the factor as external control input in control operation. This is the object of this function. (External control operates as follows:)

Rough block diagram

Note 1: This external control works only for control output 1.

REM Sc_L > Sc_H

Note 1: For P.B, see 6-7. 9) Setting of remote proportional coefficient.
REM_OUT1 $=\left\{\right.$ REM input value $\left.-\left(S c_{-} H+S c _L\right) / 2\right\} /\left(S c _H-S c _L\right) \times$ P.B [\%]
Here, linear delay operation on the above REM_OUT1 is carried out by the use of REM Time. Note that REM_OUT1 is restricted as follows:
-100.0% § REM_OUT1 § +100.0 \%
Note 2: For REM Time, see 6-7. 10) Setting of remote linear delay time.
Note 3: External control operation is not carried out when remote input value goes over scale.
Note 4: When REM has been assigned to DI input, external control operation is carried out as follows: If DI to which REM has been assigned is OFF \rightarrow External control operation is not carried out. If DI to which REM has been assigned is ON \rightarrow External control operation is carried out.
Note 5: In the event external control operation is started before the control system and REM input become stable, control action may lack stability. We recommend you to begin external control operation only after the control system and REM input are somewhat stabilized.
8) Setting of remote tracking (Group 2-13A)

REM Mode:	RSV
REM Trck	NO
REM P.B :	OFF
REM Time:	OFF

Setting range: YES, NO
Initial value: NO

Remote SV value can be copied in SV value of any local SV No.
In case REM Trck: YES
\square When KEY has been selected in 6-7. 3) Setting of selection/switch of multi-SV No.
Upon moving from remote SV No. to desired local SV No. by key operation, remote SV value is copied in SV value of the local SV No. Notwithstanding, if Remote is assigned in 6-4.3) Setting of DI assignment and REM SV/LOC SV has been switched by means of external contact signal, the remote SV value is copied in SV value of SV No.1.
\square When EXT has been selected in 6-7.3) Setting of selection/switch of multi-SV No.
Upon moving from remote SV No. to local SV No. selected by external switch by means of external control signal, remote SV value is copied in SV value of the local SV No.

In case REM Trck: NO

Remote tracking does not function.

Note 1: In case remote SV values goes over Scale, remote tracking does not function.
9) Setting of remote proportional coefficient (Group 2-13A)
(This parameter is valid only when REM Mode:CTRL.)

REM Mode:	RSV
REM Trck:	NO
REM P.B $\boldsymbol{\text { OFF }}$	OF
REM Time:	OFF

Setting range: OFF, 0.1~999.9\%
Initial value: OFF

Remote proportional coefficient (REM P.B) is the parameter for setting a percentage at which a value whose range is specified in Remote Scale is output to REM_OUT1.

The larger REM P.B, the larger REM_OUT1 value.
The smaller REM P.B, the smaller REM_OUT1 value.
Note 1: When REM P.B=OFF, external control operation is not carried out.
10) Setting of remote linear delay time (Group 2-13A)
(This parameter is valid only when REM Mode:CTRL.)

REM Mode:	RSV
REM Trck :	NO
REM P.B :	OFF
REM Time	OFF

Setting range: 1~9999, control cycle (0.2 sec .)
Initial value: OFF

Remote linear delay time (REM Time) is the parameter used to set the length of time to be taken for reflecting a change in remote input in REM_OUT1 output.

The longer REM time, the more slowly a change in remote is reflected in REM_OUT1.

Note 1: If REM Time=OFF, a change in remote input is reflected directly in REM_OUT1.

© Matters Related to Ramp Setting

(This setting is used only when Mode 2 or 3 has been set in 6-1.4) Setting of mode. If Mode 1 or 4 has been set, this screen is not displayed.)

```
What is "ramp control"?
It is the function that when set value (SV value) is changed, it undergoes the change gradually according to set time
and amount of change lest the load be changed abruptly.
```

11) Setting of ramp value (Group 2-14)

| RAMP Down】 | OFF |
| :--- | :--- | :--- |
| RAMP Up : OFF | |
| RAMP Unit: | ${ }^{\circ}$ c/Min |
| RAMP Rate: | X1 |

Setting range:	RAMP_Down ; OFF, 1~9999
	RAMP_Up ; OFF, 1~9999
Initial value:	RAMP_Down ; OFF
	RAMP_Up ; OFF

RAMP Down: OFF
RAMP Up $\boldsymbol{O F F}$
RAMP Unit: ${ }^{\circ} \mathrm{C} / \mathrm{Min}$
RAMP Rate: X1

In this screen downward ramp value (RAMP_Down) and upward ramp value (RAMP_Up) are set.
Note 1: Whether to use downward ramp value (RAMP_Down) or upward ramp value (RAMP_Up) during execution of ramp control is automatically selected by the instrument.
Note 2: It is possible to change downward ramp value (RAMP_Down) or upward ramp value (RAMP_Up) during execution of ramp control. When changed, ramp control is carried out immediately with new values.
Note 3: If downward ramp value (RAMP_Down) or upward ramp value (RAMP_Up) is turned OFF during execution of ramp control, ramp control stops and the SV value of the targeted SV No. serves as SV value.
12) Setting of ramp unit (Group 2-14)

RAMP Down:	OFF	
RAMP Up : OFF		
RAMP Unit	${ }^{\circ} \mathrm{C} / \mathrm{Min}$	
RAMP	Rate:	X1

Setting range: Unit/Sec., Unit/Min.

 Initial value: Unit/Min.In this screen, second (Sec.) or minute (Min.) is selected as the unit of the rate of change.

Note 1: The unit of ramp time can be changed during execution of ramp control. When changed, ramp control is carried out immediately on the new unit.
13) Setting of ramp rate (Group 2-14)

| RAMP Down: OFF |
| :--- | :--- | :--- |
| RAMP Up : OFF |
| RAMP Unit: ${ }^{\circ} \mathrm{C} / \mathrm{Min}$ |
| RAMP Rate $\mathrm{X1}$ |

Setting range: $\times 1, \times 0.1$
Initial value: $\times 1$

For the position of decimal point of PV display on set unit, $\times 1$ or $\times 0.1$ can be selected.

Note 1: Ramp rate can be changed during execution of ramp control. When changed, ramp control is carried out immediately at the new ramp rate.

How to Execute Ramp Control
\square Conditions for execution (common to front key input and external input)
(1) AT is not in execution.
(2) STANBY is not on.
(3) RAMP_Down or RAMP_Up is not OFF.
(4) Neither Mode 0 nor Mode 1 not selected in 6-1. 4) Setting of mode.

Note 1: Ramp control is not executed by moving from local SV No. to remote SV No.
Note 2: When YES has been selected in 6-7. 8) Setting of remote tracking, ramp control is not executed by moving from remote SV No. to local SV No.
Note 3: If power turns OFF during execution of ramp control, ramp control is stopped and the SV value of targeted SV No. serves as SV value.

To begin with, press the D IS P key to call the initial screen (Group 0-0) of the monitor group. Then, pressing the \square key causes SV No. to flash. When target SV No. is selected by means of the $\square \boldsymbol{\Delta}$ or $\quad \square$ key and is registered by means of the ENT key, the RUN monitor lamp begins to flash and ramp control is executed.

DISP
Note 4: A change of mode in 6-1. 4) Setting of mode is not possible during execution of ramp control.

* For temporarily stopping ramp control which is being executed, see 6-8.5) Temporary stop/restart of ramp control.

6-8. Control group (Group 1)

Press the G R P key to call the CONTROL screen (Group 1-0). Then, press the SCRN key to move to a screen in which a setting or a change is to be made. Use the \sim key to select a parameter on the screen.

1) Execution/stop of auto tuning (AT) (Group 1-1)
```
Auto Tuning\ STOP
AT Point: 0.000 知
AT Point: \(0.000{ }^{\circ} \mathrm{C}\)
```

Setting range: STOP, EXEC
Initial value: STOP

This parameter is used to execute or stop auto tuning (AT).

> What is auto tuning (AT)?
> Optimum PID constants are automatically calculated by the limit cycle method and control is carried out by using such values.
\square Conditions for execution (common to front key input and external input)
(1) Ramp control is not in execution.
(2) MANUAL is not on.
(3) $\mathrm{P}=0$ (ON-OFF control) has not been selected.
(4) STANBY is not on.
(5) Remote SV is not in use.
(6) PV value is not over Scale.

Note 1: As output limits affect AT execution, lower limit and higher limit values of control output should be set in 6-6. 8) Setting of output limit before executing AT.
Note 2: Only control output 1 executes AT when DA characteristic (two-stage heating) has been selected in the two output type. (Control output 2 executes AT at 0% or with lower limit output limiter left as it is.)
Note 3 During execution of AT, AT lamp in the front panel flashes and the lamp goes out upon termination or stop of AT.
Note 4: Auto tuning stops when
(1) Scale Over occurs.
(2) power goes off.
(3) time of ON or OFF exceeds about 200 minutes.
(4) STANBY is selected.
(5) Exe1 or Exe2 of initialization is executed.
2) Setting of auto tuning point (Group 1-1)

```
Auto Tuning: STOP
```

AT Point $0.000{ }^{\circ} \mathrm{C}$

Setting range: $0 \sim 10000$ unit
Initial value: 0 unit

If you want to avoid hunting resulting from limit cycle with set SV value in executing auto tuning, set a hypothetical SV value (AT point) to carry out auto tuning at a point apart from the actual SV value

Note 1: AT point is absolute value input of difference between SV value and hypothetical SV value.
Note 2: When 0 is set as AT point, SV value works as AT point.
Note 3: In case PV value is included in AT point, SV value works as AT point.
3) Auto/manual of control output (Group 1-2)

Control A/MD AUTO	
Control Exe: EXEC	
Ramping Run: STOP	
Operation $:$ LOCAL	Setting range: AUTO, MANUAL

Whether control output is to be operated automatically (AUTO) or manually (MANUAL) can be selected.
\square Conditions for execution (common to front key input and external input)
(1) Auto tuning is not in execution.
(2) STANBY is not on.

Note 1: When MANUAL is selected, the MAN lamp in the front panel flashes.
Note 2: If power is turned off during MANUAL output and turned on again, MANUAL continues.

MANUAL Output Operating Method

When MANUAL is selected on the Control A/M parameter and registered, the MAN lamp in the front panel flashes. To operate control output manually, call the initial screen of the monitor group (Group 0-0) by the use of the D IS P key. From there, move to the group 0-1 screen of the group by means of the SCRN key. Make sure that cursor \square is shown in the top left corner of the LCD screen. Then, press the $\square \mathbf{4}$ key to move the flashing figure to a digit whose figure is to be changed and set the value of control output 1 (OUT1) by means of the
 \square and \square keys.

In case optional function of control output 2 (OUT2) is added, move to the OUT2 parameter by means of the \qquad key and set a value in the same way as OUT1.

Note 1: In the one output type instrument, neither output value nor output bar graph for OUT2 is shown in the screen.
4) Execution/standby of control (Group 1-2)

Control A/M: AUTO
Control Exe EXEC
Ramping Run: STOP
Operation $:$ LOCAL

Setting range: EXEC, STANBY
Initial value: EXEC

This is the function to keep control output, event output and external output on standby and to start control only after input is steadied
STANBY: Control is out of operation and control output is set at 0%.
EXEC : Ordinary control is carried out.
Note 1: Upon selecting STANBY, the STBY lamp in the front panel flashes.
Note 2: Analog output is output even in the state of STANBY.
Note 3: If power is turned off in the state of STANBY and turned on again, STANBY continues.
5) Stop/restart of ramp control (Group 1-2)

Control A/M: AUTO
Control Exe: EXEC
Ramping Run STOP
Operation $:$ LOCAL

Setting range: STOP, RUN
Initial value: STOP
Ramping Run ${ }^{\text {STOP }}$

While ramp control is being carried out, it can be stopped temporarily and restarted.
STOP : Ramp control being executed stops temporarily. The RUN lamp in the front panel lights and the SV display stands still.
RUN : Temporarily stopped ramp control is restarted. The RUN lamp in the front panel flashes and the SV display changes to target SV value.
6) Selection of communication (Group 1-2)

Control A/M: AUTO
Control Exe: EXEC
Ramping Run: STOP
Operation $\quad \boldsymbol{\square}$ LOCAL

Setting range: LOCAL, (COMM) Initial value: LOCAL
Ramping Run: STOP

Whether various data are to be set and changed by front key operation or through communication (optional function) is selected.
LOCAL : Various data are set and changed by front key operation. Setting and changing data through communication is not possible.
COMM : Various data are set and changed through communication. Setting and changing data by front key operation is not possible.
Note 1: For this parameter, selection and setting of COMM \Leftrightarrow LOCAL can be made through communication but selection and setting of only COMM \Rightarrow LOCAL is possible by front key operation.
(For details, please refer to the separate Instruction Manual on Communication Interface.)
Note 2: Screens are not shown if the communication optional functions are not added in your instrument.

6-9. Monitor group (Group 0)

In the monitor group, the states of set value, deviation value and control output are displayed in three screens. In the initial screen of the monitor group (Group 0-0), switch between SV value setting and SV No. in execution is possible.

In case a screen of any other group than the monitor group is on display, press the D I S P key to call the initial screen of monitor group (Group $0-0$). For moving to another screen of the monitor group, use the SCRN key.

1) Explanation about group 0-0 screen (Group 0-0)

2) Setting of SV value (Group 0-0)

When the 4 key is pressed in the initial screen of the monitor group, the rightmost digit of the SV value flashes.
Move the flashing figure to a digit whose figure is to be changed, and you can change the SV value of SV No. in execution by pressing the \square and $\quad \nabla$ keys. After making sure that the change has been made correctly, register the data by pressing the ENT key. Upon registration, the SV value stops flashing.

3) Switching of SV No. in execution (Group 0-0)

When the key is pressed in the initial screen of monitor group, the SV No. flashes, and can be changed by pressing the \qquad and $\nabla \boldsymbol{\nabla}$ keys. After making sure that the change has been made correctly, register the data by pressing the ENT key. Upon registration, the SV No. stops flashing.

Note 1: In the case of SV Select: EXT (the ESV lamp flashing), SV No. cannot be changed by front key operation.

4) Switching to Remote SV

Switching to Remote SV is available on the initial screen of monitor group. (group 0-0)
In the SV No. in execution of switching, select by using the \qquad key as $01 \rightarrow 02 \rightarrow \cdots \cdots \rightarrow 10 \rightarrow$ REM.
Resistering by ENT key allows you to switch. However, when remote function is assigned to DI, switching with the SV No. in execution cannot be done.

5) Explanation about group 0-1 screen (Group 0-1)

Note 1: In the one output type instrument, neither output value nor output bar graph of OUT2 is shown in the screen.
6) Explanation about group 0-2 screen (Group 0-2)

Note 1: In the case of one output type instrument, output value of OUT2 is not shown in the screen.

7. External Input/Output (Option)

- External Input

Selection of local SV No. and external control by assigning to DI can be carried out by means of no-voltage contact input signal from external or open collector input signal.

1. Selection of local SV No.

Local SV No. can be selected by external input. In order to use this function, you have to select EXT in 6-7. 3) Setting of selection/switch of multiSV No. to light the ESV lamp in the front panel.

Example of use:
SV No. can be selected from outside the instrument when 24-pin plug for external input/output (an accessory to this instrument) is used and BIN code digital switch is connected to pin Nos. 12 (COM), 7 (SEL1), 6 (SEL2), 5 (SEL4) and 4 (SEL8).

For 24-pin plug and BIN code digital switch (multi-SV No. switching device), see Chapter 8 Connecting Devices for Instrument Terminals.

If you do not have BIN code digital switch, select SV No. by applying contact signals to 24-pin plug terminals as shown in the following table.
When SV No. 5 is to be selected:
Short across pin Nos. 12 (COM), 7 (SEL1) and 5 (SEL3).

The mark shows shorting between the pin No. and COM.
Note 1: When SV No. 0 is selected, it becomes SV No. 1 and selection of any between No. 11 and No. 15 makes it SV No. 10.

2. External control

Actions assigned to DIs can be controlled by external no-voltage contact input signal or open collector input signal. To use this function, it is necessary to assign actions to the respective DIs in 6-4. 3) Setting of DI assignment.

Example of use:
Actions assigned from outside the instrument can be controlled when switch is connected to external input/output 24-pin plug Nos. 12 (COM), 11 (DO1), 10 (DO2), 9 (DO3) and 8 (DO4) and contact signals are applied.

SR253 1/O 24-pin plug	DI-COM	(12)
	DI1	(11)
	DI2	(10)
	DI3	
	DI4	

8. Connecting Devices for Instrument Terminals

8-1. 24-pin plug
Pin arrangement of external input/output 24-pin plug:

Pin No.	External contact input	Pin No.	Open collector output
1	------	13	---
2	------	14	------
3	------	15	------
4	SL SEL8	16	------
5	SL SEL4 ${ }^{\text {d }}$ (CODE	17	------
6	SL SEL2 $\}$ BIN CODE	18	------
7	SL SEL1	19	DO 5
8	DI 4	20	DO 4
9	DI 3	21	DO 3
10	DI 2	22	DO 2
11	DI 1	23	DO 1
12	SV, DI COM	24	DO COM

Exterior view of 24-pin plug (available separately) attached with connection cord (with crimp terminal, shielding wire, and mark band).

Note 1: If you need connection cords which are longer than 1000 mm , call our local business office.

8-2. Multi-SV No. switching device

Exterior view of multi-SV No. switching device (available separately), terminal arrangement and panel cut-out

Model: KA251
H48×W48×D100mm

Exterior view

Diagram of terminal arrangement

Unit: mm

Panel cut-out size

For switching SV No. externally, use this device together with the above-mentioned 24-pin plug attached with connection cords.

9．Error Messages（PV Display）

9－1．Problems found in check－up upon application of power

Error message	Cause
ロー，ロッテ	ROM problem
ミー，ロ！	RAM problem
ローロ゙ー	EEPROM problem
延ー ロ！ー！	A／D problem

Note 1：If any of the messages shown in the table are displayed，repair or replacement will be necessary．Turn the power off as quickly as possible and call the agent or our business office．
Note 2：With the occurrence of any of the problems shown in the table， all outputs turn off or to 0% ．

9－2．Problems with PV Input

Error message	Cause	
	PV value went over lower limit（ $-10 \% \mathrm{FS}$ ）of measuring range． PV value went over higher limit（ $+110 \% \mathrm{FS}$ ）of measuring range． Count fell below lower limit． Count exceeded higher limit．	
号----	R．T．D． 1 burnt out． R．T．D． 2 burnt out． R．T．D． 3 burnt out or more than two points burnt out．	
	Thermocouple burnt out． In the case of thermocouple input，reference junction compensation is on the lower limit． In the case of thermocouple input，reference junction compensation is on the higher limit．	
ロ゙ー！ロー	A／D problem	

Note 1：If any of the above messages are displayed，check input and CJ．
If nothing is wrong with them，there may be some other cause and you should call the agent or our business office．
Note 2：In case A／D is out of order，it should be dealt with in the same way as when PV or REM goes over their higher limits．
10. List of Parameters

- Control Group (Group 1)

Control Group	Code	Description of function	Setting range	Initial value
	Auto Tuning			
	Execution/stop of auto tuning	STOP EXEC	STOP	
	AT Point $\quad \star$	Auto tuning point	$0 \sim 10000$ unit	0 unit

Control Group	Code	Description of function	Setting range	Initial value
	Control A/M	Auto/manual of control output	AUTO MANUAL	AUTO
	Control Exe	Execution/standby of control	EXEC STANBY	EXEC
	Ramping Run \star	Temporary stop/restart of ramp control	$\begin{aligned} & \text { STOP } \\ & \text { (RUN) } \end{aligned}$	STOP
[Key Lock 2]	Operation	Communication	LOCAL (COMM)	LOCAL

Note 1: Legend:-
[Key Lock 1]: The parameters are locked when Lock1, Lock2 or Lock3 is set.
[Key Lock 2]: The parameters are locked when Lock2 or Lock3 is set.
[Key Lock 3]: The parameters are locked when Lock3 is set.
\star : The parameters are initialized when Exe1 is selected in setting of initialization.

- SV/Remote/Ramp Group (Group 2)

SV Group	Code	Description of function	Setting range	Initial value
	SV_No. 1	Target set value 1	Within set value limiter	0 unit
	SV_No. 2	Target set value 2		
	SV_No. 3	Target set value 3		
	SV_No. 4	Target set value 4		
	SV_No. 5	Target set value 5		
	SV_No. 6	Target set value 6		
	SV_No. 7	Target set value 7		
	SV_No. 8	Target set value 8		
	SV_No. 9	Target set value 9		
[Key Lock 3]	SV_No. 10	Target set value 10		

SV Group	Code	Description of function	Setting range	Initial value
	SV Limt_H ${ }^{\text {® }}$	Set value limit	Within measuring range but SV_L < SV_H	Lower limit of measuring range
	SV Limt_L *	Set value limit		Higher limit of measuring range
[Key Lock 1]	SV Select	Selection/switch of Multi-SV No.	$\begin{aligned} & \text { KEY } \\ & \text { EXT } \end{aligned}$	KEY

SV Group	Code	Description of function	Setting range	Initial value
	REM Mode	Remote mode	$\begin{aligned} & \text { RSV } \\ & \text { CTRL } \end{aligned}$	RSV
	REM Trak	Remote tracking	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	NO
	REM P.B	Remote proportional coefficient	OFF, 0.1~999.9\%	OFF
[Key Lock 1]	REM Time	Remote delay time	OFF, 1~9999	OFF

SV Group	Code	Description of function	Setting range	Initial value
	RAMP_Down \star	Downward ramp	OFF, 1~9999	OFF
	RAMP_Up *	Upward ramp	OFF, 1~9999	OFF
	RAMP_Unit ${ }^{\text {* }}$	Unit for ramp control	Unit/Sec. Unit/Min.	Unit/Min.
[Key Lock 1]	RAMP_Rate \star	Ramp rate	$\begin{aligned} & \times 1 \\ & \times 0.1 \end{aligned}$	$\times 1$

- PID Group (Group 3)

PID Group	Code		Description of function	Setting range	Initial value
	P_{1}	\star	Proportional band (\%)	OFF, 0.1~999.9\%	3.0\%
	I_{1}	\star	Integral time (sec.)	OFF, 1~6000 sec.	120 sec .
	D_{1}	\star	Differential time (sec.)	OFF, 1~3600 sec.	30 sec .
	DF_{1}	\star	Action hysteresis	1~9999 unit	20 unit
	Zone	\star	Setting of zone	Within measuring range	0 unit
[Key Lock 1]		\star	Manual reset	-50.0~50.0\%	0.0% (1 output) -50.0% (2 outputs)

PID Group	Code		Description of function	Setting range	Initial value
	P_{2}	*	Proportional band (\%)	OFF, 0.1~999.9\%	3.0\%
	I_{2}	\star	Integral time (sec.)	OFF, 1~6000 sec.	120 sec .
	D_{2}	\star	Rate time (sec.)	OFF, 1~3600 sec.	30 sec .
	DF_{2}	\star	Action hysteresis	1~9999 unit	20 unit
[Key Lock 1]	DB	\star	Dead band	-20000~20000 unit	0 unit

PID Group	Code	Description of function	Setting range	Initial value
	m_O ${ }_{1}$, Lmt_L	Lower limit value of output 1 limit	-5.0~104.9\%	0.0\%
	m_O ${ }_{1}$, Lmt_H	Higher limit value of output 1 limit	-4.9~105.0\%	100.0\%
	m_O2, Lmt_L	Lower limit value of output 2 limit	-5.0~104.9\%	0.0\%
[Key Lock 1]	m_O2, Lmt_H	Higher limit value of output 2 limit	-4.9~105.0\%	100.0\%

PID	Code		Description of function	Setting range	Initial value
	Zone HYS	\star	Zone hysteresis	0~10000 unit	20 unit
	Zone PID	\star	Zone PID mode	Singl Zone	Sing1
	REM PID	\star	Remote PID No.	01~10	01
[Key Lock 1]	SF	\star	Target value function	0.00~1.00	0.40

- EVENT/DO Group (Group 4)

EVENT/DO Group Event 1 Event 2 Event 3 DO 1 DO 2 DO 3 DO 4 DO 5	Code	Description of function	Setting range	Initial value
	Mode	Action mode	DEV High DEV Low DEV Outside DEV Inside PV High PV Low SV High SV Low Auto Tuning Manual Remote Run Stanby Scale Over PV Scale Over REM Scale Over Direct HBA (with heater break alarm option) HLA (with heater loop alarm option)	EV1: DEV High EV2: DEV Low EV3: Scale Over (HBA) DO1: Auto Tuning DO2: Manual DO3: Remote DO4: Run DO5: Stanby
	Set Point \star	Action set point (only for DEV, PV and SV)	DEV High $: 0 \sim 25000$ unit DEV Low $:-25000 \sim 0$ unit DEV Outside $: 0 \sim 25000$ unit DEV Inside $: 0 \sim 25000$ unit PV High $:$ within measuring range PV Low $:$ within measuring range SV High $:$ within measuring range SV Low : within measuring range	D H : 25000 unit D L : -25000 unit D O : 25000 unit D I : 25000 unit P H: Higher limit value of measuring range PL:Lower limit value of measuring range S H : Higher limit value of measuring range S L : Lower limit value of measuring range
	Diffrntl ${ }^{\text {® }}$	Action hysteresis (only for DEV, PV and SV)	1~9999 unit	20 unit
	Delay	Delay time (only for DEV, PV and SV)	OFF, 1~9999 sec.	OFF
	Inhibit	Inhibit action (only for DEV, PV and SV)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
[Key Lock 1]	Charact	Output characteristics (only for DEV, PV and SV)	Open Close	Open

- OPTION Group (Group 5)

OPTION Group Heat Brak	Code	Description of function	Setting range	Initial value
	HBA Curr	Heater break alarm current value	OFF, $0.1 \sim 50.0 \mathrm{~A}$	OFF
	HLA Curr	Heater loop alarm current value	OFF, $0.1 \sim 50.0 \mathrm{~A}$	OFF
	HA Mode	Heater break/loop alarm mode	LOCK REAL	LOCK

OPTION Group Commu (Address) (bps) (Data) (Mode)	Code	Description of function	Setting range	Initial value
	Addr	Machine address	00~99	01
	BPS	Communication rate	$\begin{array}{r} 1200 \mathrm{bps} \\ 2400 \mathrm{bps} \\ 4800 \mathrm{bps} \\ 9600 \mathrm{bps} \\ 19200 \mathrm{bps} \end{array}$	1200 bps
	DATA	Length of data, parity	$\begin{aligned} & 7 \mathrm{E} 1 \\ & 7 \mathrm{E} 2 \\ & 7 \mathrm{~N} 1 \\ & 7 \mathrm{~N} 2 \\ & \text { 8E1 } \\ & \text { 8E2 } \\ & \text { 8N1 } \\ & \text { 8N2 } \end{aligned}$	7E1
[Key Lock 1]	Mode	Communication protocol mode	SR25 Mode	(Standard) SR25 Mode

OPTION Group	Code	Description of function	Setting range	Initial value
	MEM	Communication memory mode	EEP RAM	EEP
	CTRL	Control code (Standard mode only)	STX_ETX_CR STX_ETX_CRLF @_:_CR	STX_ETX_CR
	BCC	Check sum (Standard mode only)	Add Add-two's cmp XOR NONE	Add

- Output Group (Group 6)

OUTPUT Group	Code	Description of function	Setting range	Initial value
	Out Actn	Output characteristics	Rev Act. Dir Act.	Rev Act.
	Out1 Cyc	Output 1 cycle	1~200 sec.	$\begin{aligned} & 30 \mathrm{sec} . \text { (Contact) } \\ & 3 \mathrm{sec} . \text { (SSR) } \end{aligned}$
[Key Lock 1]	Out2 Cyc	Output 2 cycle	1~200 sec.	$\begin{aligned} & 30 \mathrm{sec} . \text { (Contact) } \\ & 3 \mathrm{sec} . \text { (SSR) } \end{aligned}$

OUTPUT Group	Code	Description of function	Setting range	Initial value
	Err_Out 1	Output 1 in case of Scale Over	$-0.5 \sim 105.0 \%$	0.0%
	Err_Out2	Output 2 in case of Scale Over	$-0.5 \sim 105.0 \%$	0.0%

■ Unit/Measuring Range Group (Group 7)

UNIT/RANGE Group	Code		Description of function	Setting range	Initial value
	PV Bias	\star	PV bias	-9999~9999 unit	0 unit
	PV Filt	\star	PV filter	OFF, 1~300	OFF
	Pt Type		Type of R.T.D.	Pt100 JPt100	Pt100
[Key Lock 1]	CJ Comp		Reference junction compensation	$\begin{aligned} & \text { INTER } \\ & \text { EXTER } \end{aligned}$	INTER

UNIT/RANGE Group	Code	Description of function	Setting range	Initial value
	Unit	Measurement unit	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{F}$ \% (Only for linear input) K (Only for thermocouple) BRK (Only for linear input)	${ }^{\circ} \mathrm{C}$
	Figur	Rounding of fraction in lowest decimal place	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	YES
	Range	Measuring range	1~17 (thermocouple) 18~19 (thermocouple, kelvin) 1~16 (R.T.D.) 1~7 (voltage mV) 1~7 (voltage V) 4~5 (Current mA)	6 (thermocouple) 18 (thermocouple) 14 (R.T.D.) 2 (voltage mV) 6 (voltage V) 5 (Current mA)

UNIT/RANGE Group	Code	Description of function	Setting range	Initial value
	PV D.P.	Position of decimal point	XXXXX XXXX.X XXX.XX XX.XXX X.XXXX	XXXX.X
				-19999~26000 unit (Minimum span 100 unit) (Maximum span 25000 unit)

- Lock/Initialization Group (Group 8)

LOCK/INIT Group	Code	Description of function	Setting range	Initial value
	Key Lock	Key lock (The key lock parameter is not locked.)	OFF LOCK1 (excluding SV and CONTROL) LOCK2 (excluding SV) LOCK3 (all parameters)	OFF
	Disp Ret	Time for screen to reappear	OFF, 10~120 sec.	60 sec .
	Initial	Initialization	None EXE1 (Parameters marked with *) EXE2 (All including those marked with *)	None

LOCK/INIT Group	Code	Description of function	Setting range	Initial value
[Key Lock 1]	Mode	Mode	One output: 00,02 Two outputs: $00,01,02,03$	02 (for one output type) 03 (for two output type)

11. Sheet for Recording Set Parameters

SV/Remote/Ramp setting group (Group 2) and PID setting group (Group 3)

		User set value								Multi-SV No.	
		1	2	3	4	5	6	7	8	9	10
SV set value											
PID set value (output 1)	P_{1}										
	I_{1}										
	D_{1}										
	ZONE										
	DF_{1}										
	MR										
Set value for output limits (output 1)	Lmt_L										
	Lmt_H										
PID set value (output 2)	P_{2}										
	I_{2}										
	D_{2}										
	ZONE										
	DF_{2}										
	DB										
Set value for output limits (output 2)	Lmt_L										
	Lmt_H										

Item	User set value
SV Limt_L	
SV Limt_H	
SV Select	
REM Bias	
REM Filt	
REM Sc_L	
REM Sc_H	
REM Mode	
REM Trck	
REM P.B	
REM Time	
RAMP Down	
RAMP Up	
RAMP Unit	
RAMP Rate	

Item	User set value
Zone HYS	
Zone PID	
REM PID	
SF	

Unit/Measuring range setting group (Group 7)

Item	User set value
PV Bias	
PV Filt	
Pt Type	
CJ Comp	
Unit	
Figur	
Range	
PV D.P.	
PV SCL	
PV SCH	

Lock/Initialization group (Group 8)

Item	User set value
MODE	

EVENT/DO setting group (Group 4)

EV 1	Item	User set value
	Mode	
	Set Point	
	Diffrntl	Delay
	Inhibit	
	Charact	
	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	
EV 3	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	

Option group (Group 5)

Item	User set value
Ao1 Mode	
Ao1 SC_L	
Ao1 SC_H	
Ao2 Mode	
Ao2 SC_L	
Ao2 SC-H	
DI1	
DI2	
DI3	
DI4	
HBA Curr	
HLA Curr	
HA Mode	
Addr	
Mode	
MEM	
CTRL	
BCC	
DELY	

	Item	User set value
DO 1	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	
DO 2	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	
DO 3	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	
DO 4	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	
DO 5	Mode	
	Set Point	
	Diffrntl	
	Delay	
	Inhibit	
	Charact	

12. Specifications

1. Display

- LED display:
- LCD display:
- LED lamp indication:
- Display accuracy:
- Temperature range
for maintaining accuracy:
- Display resolution:
- Sampling cycle:

2. Setting

- Local setting:

Setting range:
Multi SV value setting:
Multi SV value setting:
Higher and lower limit setting limiter:

- Remote setting:

Setting accuracy:
Setting signal:
Sampling cycle:
Remote scaling:
Remote bias:
Remote filter:

- Local/remote switching:
- Direct tracking function:
- Ramp control:

Setting range:
3. Input

- Thermocouple:

External resistance allowable range:

Input impedance:
Burnout function:
Reference junction compensation:

Internal reference junction
compensation accuracy:

7-segment green LED 5 digits/height of character 14 mm
Measured value (PV) display
128×32 full dot matrix liquid crystal display
(Basic display 21 digits, 4 lines with LED back light)
Set value (SV), SV No. display and set parameter display
Action (status) display 16 types for 1 output, 17 types for 2 outputs
AT, MAN, STBY, RUN, ESV, REM, COM, EV1, EV2, EV3, DO1, DO2, DO3, DO4, DO5, OUT1, OUT2
TC input: $\quad \pm\left(0.1 \% \mathrm{FS}+1^{\circ} \mathrm{C}\right)$
Pt input: $\quad \pm\left(0.1 \% \mathrm{FS}+0.1^{\circ} \mathrm{C}\right)$
mV, mA input: $\quad \pm(0.1 \% \mathrm{FS}+1$ digit $)$
$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Depends on measuring range and scaling (0.0001/0.001/0.01/0.1/1)
200 msec . (0.2 sec .)

By 8 front key switches
Same as measuring range
Setting of 10 points maximum possible
Selectable by front key switches or DI input (binary code)
Higher/lower limit individual setting as desired within measuring range
(lower limit value < higher limit value)
By external analog signals
Not insulated/standard ($0 \sim 10 \mathrm{~V}$); Insulated/optional
$\pm(0.1 \% \mathrm{FS}+1$ digit $)$
$0 \sim 10 \mathrm{~V}, 1 \sim 5 \mathrm{~V}$ DC, $4 \sim 20 \mathrm{~mA}$ DC/Selectable from code selection table
3 times/sec. (200/400 msec.)
Possible within measuring range (inverse scaling possible)
± 9999 unit
OFF, 1~300 Sampling cycle (Approx. 1/3 sec.)
By front key switch or external operation
Remote set value switchable to local set value bumplessly
Increment/Decrement control
1~9999 unit/min. or sec. individual setting (0.1~999.9 unit/min. or sec. individual setting)

B, R, S, K, E, J, T, N, PLII, PR40-20, WRe5-26, \{L, U (DIN) 43710\}
Gold \& iron-Chromel (multi input, multi range)
100 max.
Influence of external resistance: $1 \mu \mathrm{~V} / 10$
500k min.
Standard feature (up scale)
Selectable between internal reference junction compensation/external reference junction compensation
$\pm 1.0^{\circ} \mathrm{C}$ (within range from 18 to $28^{\circ} \mathrm{C}$)

- R.T.D.:

Lead wire tolerable resistance:
Amperage:

- Voltage:

Input impedance:

- Current:

Receiving impedance:

- PV bias:
- PV filter:
- Isolation

4. Control

- Control mode:
- Control output 1

Multi PID:
Control output 1 proportional cycle:

- Control output 2 (applicable only to apparatus with optional function of 2 outputs)

Multi PID:
Control output 2 proportional cycle:

- Control output type/rating

Output resolution:
Output accuracy:

- Operation/output updating cycle:
- Multi PID:

Zone PID mode:

Control output 1
Proportional band:
Integral time:
Derivative time:
Action hysteresis:
Control output 2
Proportional band:
Integral time:
Derivative time:
Action hysteresis:
Dead band:

- Higher/lower output limiter:

Setting range:

- Control output characteristics:
- External control input:

Remote mode:
Remote proportional coefficient:
Remote primary delay time:

JIS Pt/JPt 3-wire type (multi range)
5 max./wire
Approx. 1mA
$-10 \sim 10,0 \sim 10,0 \sim 20,0 \sim 50,10 \sim 50,0 \sim 100,-100 \sim 100 \mathrm{mV}$ DC or $-1 \sim 1,0 \sim 1,0 \sim 2,0 \sim 5,1 \sim 5,0 \sim 10$,
$-10 \sim 10 \mathrm{~V}$ DC (Multi input, programmable scaling)
500 k min.
4~20, 0~20mA DC (Multi input, programmable scaling)
250
± 9999 unit
OFF, 1~300 sampling cycle (0.2 sec .)
Insulated between input and DI input, outputs insulated from each other (not insulated between input and system, remote input and CT input)

In case of 1 output:	Expert PID control with auto tuning function
In case of 2 outputs:	Expert PID+PID control with auto tuning function
	During RA - Heating/cooling action
	During DA - Heat + heat action

By PID No. 01~10 (10 types)
$1 \sim 200 \mathrm{sec}$. (in case of contact or SSR drive voltage output)

By PID No. 01~10 (10 types)
$1 \sim 200 \mathrm{sec}$. (in case of contact or SSR drive voltage output)
Contact output: $\quad 240 \mathrm{~V} \mathrm{AC} / 2.5 \mathrm{~A}$ (resistive load)
Current output: $\quad 4 \sim 20 \mathrm{~mA}$ DC/load resistance: 600 max.
SSR drive voltage: $\quad 12 \pm 1.5 \mathrm{~V}$ DC/load current: 30 mA max.
Voltage output: $\quad 0 \sim 10 \mathrm{~V}$ DC/ load current: 2 mA max.
Approx. 1/8000 (with current/voltage output)
$\pm 0.5 \%$ FS ($5 \sim 100 \%$ output/within accuracy maintaining temperature range)
200 msec .
Individual PID (10 types) setting for each SV No. and Remote SV. Zone PID, i.e., PID setting
for each zone of SV values is also possible.
Selectable between individual PID and zone PID

Off, 0.1~999.9\% (Off setting: On-Off action)
Off, 1~6000 sec. (Off setting: With manual reset)
Off, 1~3600 sec.
1~9999 unit (during On-Off action)

Off, 0.1~999.9\% (Off setting: On-Off action)
Off, 1~6000 sec.
Off, 1~3600 sec.
1~9999 unit (during On-Off action)
-20000~20000 unit
Higher limit/lower limit (to be set on every individual PID)
-5.0~105.0\% (lower limit < higher limit)
RA/DA switchable by front key switch or external control input (DI)
Remote input usable as external control input
Remote SV input/external control input selectable
Off, 0.1~999.9\%
Off, 1~9999 sec.
Output setting range: Y, P: $0.0 \sim 100.0 \%, \mathrm{I}, \mathrm{V}:-5.0 \sim 105.0 \%$

Output resolution:
Auto/manual switch:

- Isolation:

5. Event Output (Option)

- The number of outputs:
- Output rating:
- Setting/selection:
- Isolation

Y, P: 0.0~100.0\%, I,V: -5.0~105.0\%
0.1%
Balanceless bumpless action (within proportional band range)
Switching by front key switch or external control input (DI)
Insulated between control output and various inputs/outputs and system
(not insulated between 1 output and 2 outputs)

Total 3 points, from EV1 to EV3
Contact output 240 V AC/1.0A (resistive load)
Individual setting (individual output)/Selectable from following 19 types (output designation)
$\left.\begin{array}{rlllll}\text { 1) } & \text { DEV } & : & \text { Higher limit (deviation value action) }\end{array}\right)$
*) DEV, PV and SV events allow the following setting:

Hysteresis	$:$	$1 \sim 9999$ unit
Inhibit action	$:$	With/without selectable
Action delay	$:$	Off, $1 \sim 9999 \mathrm{sec}$.
Switching of output		
characteristics	$:$	Individually selectable between normal open and normal close
Insulated between EV outputs and various inputs and system; various outputs insulated from		
each other		

6. DI Input/DO Output (Optional in common)

- The number of DI inputs:
- DI input type:
- DI input rating:
- The number of DO outputs:
- DO output type:
- DO output rating:
- Isolation:

Multi SV selection 4 points, control inputs 4 points (Total 8 points)
Exclusive use for multi SV selection (binary input)
Selective setting from 8 types; NOP, AT, MAN, REM, STOP, STBY, DA, DIR
Non-voltage contact, open collector input
5 points from DO1 to DO5
Individual setting/individual output (Selective designation from 19 types)
(Details are the same as EV option)
Open collector output 24 V DC/50mA max.
Insulated between DI input/DO output and various inputs and system; various outputs insulated from each other (not insulated between DI input and DO output)

7. Heater Break Alarm (Option)

- Alarm action:
- Setting

Current setting range:
Setting resolution:

- Display

Amperage display:
Display accuracy:

- Output holding:
- Sampling cycle:
- Minimum time for action confirmation:
- Isolation:
- Output method:

8. Analog Output (Option)

- The number of analog outputs :
- Analog output type:
- Output rating:
- Output accuracy:
- Output resolution:
- Output updating cycle:
- Output scaling:
- Isolation:

Heater amperage detected by externally attached CT (special CT provided) (single phase)
Alarm output On upon detection of heater break while control output is On.
Alarm output On upon detection of heater loop alarm while control output is Off.

Off, $0.1 \sim 50.0 \mathrm{~A}$ (Off setting: HB or HL alarm action stops)
0.1A
$0.0 \sim 55.0 \mathrm{~A}$
$3 \% \mathrm{FS}$ (When sine wave is 50 Hz)
Selectable between holding mode and real mode
1 sec .
250 msec . min. (every second) both at On time and Off time
Isolated between CT input and DI input; various outputs insulated from each other (not insulated between sensor input and remote input and system)

Assigned to event outputs

Maximum 2 points (individual setting/individual output)
Selectable from PV, SV, DEV, OUT1 and (OUT2)
$0 \sim 10 \mathrm{mV}$ DC / output resistance: 10
$0 \sim 10 \mathrm{~V}$ DC / load current: 1 mA max.
4~20mA DC / load resistance: 300 max.
$\pm 0.1 \%$ FS (of displayed value)
Approx. 0.01% (1/10000)
200 msec . (0.2 sec.)
Within measuring range (inverse scaling possible)
Insulated between analog outputs and various inputs and system; various outputs insulated from each other (analog outputs not insulated from each other)

9. Communication Function (Option)

- Communication type:
- Communication system:
- Communication rate:
- Data bit length:
- Communication address:
- Communication code:
- Communication protocol:
- Others
- Isolation:

RS-232C, RS-422A and RS-485
Half duplex start-stop synchronization system
$1200,2400,4800,9600$ and (19200) bps
Selectable from 7 bits, 8 bits, no parity and even parity
0~99
ASCII code
SR25-conforming protocol
Delay time selectable, memory mode selectable
Insulated between communication signals and various inputs and system; various outputs insulated from each other

10. General Specification

- Data storage: By non-volatile memory (EEPROM)
- Operating ambient temperature/humidity range: $-10 \sim 50^{\circ} \mathrm{C} / 90 \%$ RH max. (no dew condensation)
- Storing temperature:
- Supply voltage:
- Power consumption:
- Input noise removal ratio:
- Applicable standards:
- Insulation resistance:
- Dielectric strength:
- Protective structure:
- Material of case:
- External dimensions:
- Mounting:
- Panel thickness:
- Size of mounting hole:
- Weight:
$-20 \sim+65^{\circ} \mathrm{C}$
$100 \mathrm{~V}-240 \mathrm{~V}$ AC $\pm 10 \%$ ($50 / 60 \mathrm{~Hz}$)
Maximum 15 VA
Normal mode: $\quad 60 \mathrm{~dB}$ minimum $(50 / 60 \mathrm{~Hz})$
Common mode: 140 dB minimum ($50 / 60 \mathrm{~Hz}$)
Safety: IEC1010-1 and EN61010-1
EMC: EN61326
During EMC testing, the apparatus continues to operate at a measurement accuracy within $\pm 2 \%$ of the range.

Between input/output terminal and power supply terminal: 500 V DC $20 \mathrm{M} \Omega$ minimum
Between input/output terminal and ground terminal: 500 V DC $20 \mathrm{M} \Omega$ minimum
1 min . at 2300 V AC between input/output terminal and power supply terminal
(Responsive current 5mA)
1 min . at 2300 V AC between power supply terminal and ground terminal
(Responsive current 5mA)
The front operating panel is dust-proof and drip-proof. (equivalent to IP65)
PPO resin molding (equivalent to UL94V-1)
H96×W96×D138 (panel depth : 125) mm
When terminal cover is used: (panel depth : 130) mm
When direct type plug is used: (panel depth : 180) mm
Push-in panel (one-touch mount)
1~4.5 (Panel thicker than 4.5 mm can be mounted by means of mounting metal fittings.)
H92×W92
Approx. 600g

