SRS10A Series
 (SRS11A / SRS12A / SRS13A / SRS14A)
 Digital Controller
 Instruction Manual (Detailed Version)

Thank you for purchasing a Shimaden Digital Controller. After making sure the product fits the desired description, you should carefully read the instructions and get a good understanding of the contents before attempting to operate the equipment.

Request

The instruction manual should be kept in a handy place where the end user can refer to it when necessary.

Preface

This instruction manual (detailed version) was written for those who perform wiring, installation, and routine maintenance for the SRS10A (SRS11A/SRS12A/SRS13A/SRS14A) Series.
This manual contains a description of the operating method, functions, wiring, mounting method, and precautions when handling the SRS10A (SRS11A/SRS12A/SRS13A/SRS14A) Series (hereinafter referred to as the SRS10A Series unless a separate description is required). You should, therefore, keep it handy to refer to it when operating and handling the equipment.
Be sure to observe all precautions and adhere to the procedures provided herein.
Request 1
Preface 1

1. Safety rules 3
2. Introduction 4
2-1. Preliminary check 4
(1) Model code check 4
(2) Accessories check 4
$2-2$. Notes on use 4
3. Installation and wiring 4
$3-1$. Installation site (environmental conditions) 4
3-2. Mounting 5
3-3. External dimensions and panel cutout 5
3-4 Wiring 6
3-5. Terminal layout 7
3-6. Terminal arrangement table. 7
3-7. Operation preparations 8
4. Names and functions of parts on front panel. 9
5. Parameter diagram and setting 10
5-1. Parameter diagram 10
$5-2$. Display when power is applied 12
5-3. Switching screens 12
(1) Switching screens within screen group 0 12
(2) Switching between screen group 0 and screen group 1. 12
(3) Switching screens within screen group 1. 12
(4) Switching to screen group 2 13
(5) Switching screens within screen group 2 13
(6) Switching to screen group 3 13
(7) Switching to screen group 4 13
(8) Switching screens within screen group 4 13
(9) Set data modification 13
5-4. Auto return function 14
$5-5$. Screen group 0 setting 14
(1) Setting target set values (SV). 14
(2) Manual setting of control output 14
(3) Auto tuning (AT) 15
(4) Standby (STBY) / execution (EXE) 16
(5) Event setting 16
(6) Multi SV (target set values) 17
6. Screen explanation and setting items 18
7. Measuring Range Codes 26
8. Explanation of functions 27
8-1. Events 27
(1) Alarm action 27
(2) Event standby action selection 27
(3) Event selection alarm action diagrams 27
(4) Output 1 inverted output 28
(5) Event status output action 28
8-2. Heater break/loop alarm 28
8-3. P.I.D 28
(1) P (Proportional action) 28
(2) I (Integral time) 28
(3) D (Derivative time) 28
(4) MR (Manual reset) 29
(5) SF (Target value function) 29
8-4. Control output 29
(1) Lower limit and higher limit limiter setting 29
(2) Proportional cycling time 29
(3) Control output characteristics 29
(4) Two-position action 29
8 -5. External control input (DI) 30
(1) Controller action execution EXE1 (RUN1) 30
(2) Controller action execution EXE2 (RUN2). 30
(3) Manual output (MAN) 30
(4) Auto tuning execution (AT) 30
(5) SV external selection (ESV2) 30
(6) Output 1 output characteristic (ACT1) 31
(7) Output 2 output characteristic (ACT2) 31
(8) Program (PROG) 31
(9) Hold signal (HLD) 31
(10) Advance (ADV) 31
(11) Start pattern external selection 2 bits (PTN2) 31
(12) Start pattern external selection 3 bits (PTN3) 31
(13) Total unlatching (L_RS) 31
8-6. Soft start 31
(1) Conditions that trigger soft start. 31
(2) Conditions that cancel soft start 31
8-7. Change in position of decimal point 32
(1) Change in position of decimal point for linear input 32
(2) Change in position of decimal point of TC/RTD range. 32
$8-8$. Specified screen call function 32
(1) How to register the specified screen 32
(2) How to use the registration screen 32
(3) Conditions for canceling the registration screen. 32
9. Causes and remedy of trouble and errors 3
$9-1$. Causes and remedy of trouble 33
9-2. Causes and remedy of errors 33
(1) Abnormal measured input 33
(2) Heater break/loop alarm errors 33
10. Parameter mask/lock function 34
10-1. Overview 34
10-2. Parameter diagram 34
10-3. Mask/lock setting contents 35
(1) Settings for various parameters 35
(2) Settings for each screen group 35
(3) Mask/lock initialization 35
11. Parameter setting record 36
12. Specifications 38

Safety rules, precautions concerning equipment damage, additional instructions and notes are written based on the following headings.
$₫$ WARNING: Matters that could result in injury or death if instructions are not followed.
\triangle CAUTION: Matters that could result in equipment damage if instructions are not followed.
NOTE: Additional instructions or notes.

\triangle WARNING

The SRS10A Series digital controllers are control instruments designed for industrial use to control temperature, humidity and other physical values.
You should either take appropriate safety measures or avoid using for control that could have a serious effect on human life.
The manufacturer shall not be liable for an accident that results if used without taking appropriate safety measures.

- The digital controller should be used so the terminal elements in the control box, etc., are not touched by humans.
- Do not remove the controller from its case, or insert your fingers or electric conductors inside the case.

Doing so could result in electric shock or accident involving death or serious injury.

- Be sure to turn off power while performing wiring. Failure to do so could result in electric shock.
- After wiring, do not touch terminal elements or other charged parts while they are conducting electricity. Failure to do so could result in electric shock.

\triangle CAUTION

If there is danger of damage to any peripheral device or equipment due to failure of the controller, you should take appropriate safety measures such as mounting a fuse or overheating prevention device.
The manufacturer shall not be liable for an accident that results if used without taking appropriate safety measures.

- Controller labels and alert mark \uparrow

Alert marks \triangle are printed on the terminal label of the case.
You could be shocked if you touch charged parts. The alert marks are provided to call your attention to this.

- Provide a switch or breaker as a means of cutting off power for external power circuit connected to the power terminal of the controller.
Mount a switch or breaker near the controller where the operator can get to it easily and label it as an electrical breaker for the controller.
Use a switch or breaker that conforms to requirements of IEC60947.
- Fuses

The controller does not have a built-in fuse. Be sure to mount a fuse on the power circuit connected to the power terminal. Provide a fuse between the switch or breaker and the controller. Mount on the L side of the power terminal.
Fuse rating/characteristics: 250 V AC, $0.5 \mathrm{~A} /$ medium time-lagged type or time-lagged type
Use a fuse that conforms to requirements of IEC60127.

- Voltage/current of load connected to the output terminal and EV terminal should be within the rating.

Using voltage/current that exceeds the rating could shorten the life of the contoller by raising the temperature, and could result in equipment failure. For rating, see "12. Specifications."
Connect equipment that conforms to requirements for IEC61010 to the output terminal.

- Do not apply voltage/current other than rated input to the input terminal.

Doing so could shorten product life and lead to equipment failure.
For rating, see " 12 . Specifications."
If the input is voltage or current, connect equipment that conforms to IEC61010 to the input terminal.
There are draft holes in the controller for heat to escape from. Do not allow foreign matter such as metal to get into the holes. Doing so could result in equipment failure or fire.

- Do not allow the draft holes to become clogged with dust, etc.

Doing so could shorten the life of the product due to temperature rise or insulation deterioration, and could result in equipment failure or fire.
For space between instruments, see "3-3. External dimensions and panel cutout."

- Repeating endurance tests such as dielectric strength, noise resistance and surge resistance could negatively affect the controller.
- The user should absolutely not modify or use the controller other than the way it was intended.
- It takes 30 minutes to display the correct temperature after applying power to the digital controller. (Therefore, turn the power on more than 30 minutes prior to the operation.)
- To ensure safety and maintain the functions of this device, do not disassemble this device. If this device must be disassembled for replacement or repair, contact your dealer.
- This controller is being designed for a panel-mounted type. IP66 standard protection is only applicable for the front panel of SRS12A. Do not use in any environment where water or solids in excess of IEC60529 may get inside or when the device is not facing the front.

2. Introduction

2-1. Preliminary check

The controller has undergone sufficient quality control inspections, but you should check the specification code/appearance and make sure you have all the accessories to make sure nothing is missing or damaged.

Compare the specification code on the case with the following to make sure it is the product you ordered.
The SRS10A Series offers a selection of two codes: SRS11A and SRS12A/13A/14A.

(1) Model code check

(SRS11A model code)

SRS11A
8: Multi-input, thermocouple, R.T.D., voltage (mV) 6: Voltage (V)
Y: Contact I: Current P: SSR drive voltage V: Voltage
N : None Y : Contact I: Current P: SSR drive voltage V: Voltage E: Event output 1 point (EV3) D: External control input 1 point (DI4) 90: 100-240V AC 08: 24 V AC/DC
N : None P : With (4 patterns, max. 32 steps)
0 : None 1: Event output 2 points (EV1, EV2)
0: None 3: Voltage ($0 \sim 10 \mathrm{mV}$) 4: Current ($4 \sim 20 \mathrm{~mA}$)
6: Voltage ($0 \sim 10 \mathrm{~V}$) 5: communication (RS-485)
0 : None 1: CT 2 points input (Can be selected if control output 1 or 2 is Y, P.)
2: External control input 3 points (DI1, DI2, DI3)
0 : None 9: With
(SRS12A/SRS13A/SRS14A model code)

SRS12A, SRS13A or SRS14A

8: Multi-input, thermocouple, R.T.D., voltage (mV) 6: Voltage (V)
Y: Contact I: Current P: SSR drive voltage V: Voltage
N : None Y : Contact I: Current P: SSR drive voltage V: Voltage
E: Event output 1 point (EV3) D: External control input 1 point (DI4)
90: 100-240V AC
$\mathrm{N}:$ None P: With (4 patterns, max. 32 steps)
0 : None 1: Event output 2 points (EV1, EV2)
0 : None 3: Voltage ($0 \sim 10 \mathrm{mV}$) 4: Current ($4 \sim 20 \mathrm{~mA}$) 6: Voltage ($0 \sim 10 \mathrm{~V}$)
0: None 1: CT 2 points input (Can be selected if control output 1 or 2 is Y, P.)
0 : None 2: Control input 3 points (DI1, DI2, DI3)
0: None 5: Communication (RS-485)
0 : None 9: With
(2) Accessories check

Instruction manual (A3 size paper $\times 2$) 1 copy
Unit seals 1 sheet
Note: In the event you want to inquire about a product defect, missing accessory or other matter, please contact your nearest Shimaden agent.

2-2. Notes on use

Do not press front panel keys with a hard or pointed object. Press lightly with your fingertips.
To clean, wipe lightly with a dry cloth. Do not use solvents such as thinner.

3. Installation and wiring

3-1. Installation site (environmental conditions)

Environmental conditions for operations

The controller is designed to be used under the following conditions. Observe the following environmental conditions when using:
(1) Must be used indoors
(2) Max. elevation: 2000m
(3) Ambient temperature: -10 to $50^{\circ} \mathrm{C}$
(4) Ambient humidity: Max. 90% RH, no condensation
(5) Transient over voltage category: II
(6) Pollution class: 2 (IEC 60664)

\triangle CAUTION

Do not use the controller in the following locations.
Doing so could lead to equipment failure, damage or fire.

- Places exposed to flammable or corrosive gases, oil mist, or excessive dust that could cause insulation to deteriorate.
- Places subject to vibration or impact
- Places near strong electric circuit or places subject to inductive interference
- Places exposed to water dripping or direct sunlight
- Places where the controller is struck directly by air from heater or air conditioner

\triangle CAUTION

In order to maintain safety and function, do not remove the case from the controller.
If the case of the controller has to be removed for replacement/repair, contact your nearest Shimaden agent.
(1) Cut a hole for mounting the controller in the panel by referring to external dimentions and panel cutout in section 3-3.
(2) The panel thickness should be $1.0-3.5 \mathrm{~mm}$.
(3) The controller is provided with tabs for mounting. Insert as is from the front surface of the panel.
(4) Controllers of the SRS10A Series are designed for mounting on the panel. Be sure to mount on the panel.
(5) Be sure to install this product with the attached gasket. In case if the gasket is broken or falls off, please replace it with the designated one.
(6) If mounted in series, provide ventilation so ambient temperature does not exceed $50^{\circ} \mathrm{C}$ due to temparature rise caused by heat generation.

3-3. External dimensions and panel cutout

SRS12A

SRS13A

SRS14A

External dimensions of current detector for heater break alarm (CT)

TYPE:QCC01 0 ~30A (CTL-6-S)

TYPE:QCC02 $0 \sim 50 \mathrm{~A}$ (CTL-12-S36-8)

3-4 Wiring

\triangle CAUTION

Be sure to turn off power before wiring. Failure to do so could result in electric shock.

- After wiring, do not touch terminal elements or other charged parts while conducting electricity. Failure to do so could result in electric shock.

Take the following precautions when wiring:
(1) Wire in accordance with the terminal layout of section 3-5 and the terminal arrangement table of section 3-6. After wiring, check and make sure the wiring is correct.
(2) Crimp-type terminals fit M3 screws. Use crimp-type terminals that are no wider than 6 mm .
(3) For thermocouple input, use a compensating conductor that matches the type of thermocouple.
(4) For R.T.D. input, resistance for lead wires should be a maximum of 5Ω per wire. All 3 wires should have the same resistance.
(5) Input signal wires must not be accommodated with a strong electric circuit in the same conduit or duct.
(6) Using shielded wiring (single point grounding) is effective for static induction noise.
(7) Making input wiring short and twisting at regular intervals is effective for electromagnetic induction noise.
(8) For power supply, use wiring or cable with sectional area of at least $1 \mathrm{~mm}^{2}$ that offers the same performance as 600 V vinyl insulated wiring.
(9) Securely fasten the terminal element screw. Fastening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}(5 \mathrm{kgf} \cdot \mathrm{cm})$
(10) If the instrument appears to be easily affected by power supply noise, use a noise filter to prevent malfunctioning. Mount the noise filter on the grounded panel and make the wire connection between the noise filter output and power line terminals of the controller as short as possible.
(11) Countermeasure against lightning surge will be required for signal line over 30 m .

Pass one of the load lines through the dedicated CT hole. Wire from the CT secondary side terminal to the CT input terminal of the SRS10A Series.
There are 2 combinations of CT connection terminals for the SRS10A Series, which can detect current for 2 heater combinations.

3-5. Terminal layout

Wire in accordance with the following terminal layout and terminal arrangement table.

3-6. Terminal arrangement table

Name of terminal	Description/code	Terminal No.		
		SRS11A	SRS12A	SRS13A/14A
Power supply	100-240V AC: L	7	9	13
	100-240V AC: N	8	10	14
	$24 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC: + 24 V AC/24V DC:	7	--	--
Input	R.T.D: A, thermocouple / voltage / current: + R.T.D: B, thermocouple / voltage / current: - R.T.D: B	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$
Control output 1	Contact: NO, SSR drive voltage / voltage / current: + Contact: NO, SSR drive voltage / voltage / current: -	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$
Control output 2 (optional)	Contact: NO, SSR drive voltage / voltage / current: + Contact: NO, SSR drive voltage / voltage / current: -	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$
Event output (optional)	COM	1	3	19
	EV1	2	4	20
	EV2	3	5	21
	EV3	11-12	13-14	17-18
CT input (optional)	CT1 input	13-14	21-22	7-8
	CT2 input	15-16	23-24	9-10
External control input / DI (optional)	COM	13	17	1
	DI1	14	18	2
	DI2	15	19	3
	DI3	16	20	4
	DI4	11-12	13-14	17-18
Analog output	+	17	15	5
(optional)	$-\quad$	18	16	6
Communication(optional)	RS-485: +	17	1	11
	RS-485: -	18	2	12

Note1: With thermocouple / voltage / current input, shorting across B and B terminal will cause an error.

Note2: The following optional function of the SRS10A Series are limited to exclusive selection.

SRS11A: Only one among control output 2, event output 3 and external control input DI4 can be selected. Either CT input or external control input DI1 - 3 can be selected. Either analog output or communication can be selected.

SRS12A: Only one among control SRS13A output 2, event output 3 and SRS14A external control input DI4 can be selected.

3-7. Operation preparations

Before operating the controller, you should first check the wiring and carry out the following by screen group setting method. There is however no need to change the settings that have been set at the factory or already been made by the manufacturer.

1. Wiring check

Make sure the wiring to the connection terminals is correct. Incorrect wiring could result in burnout.

2. Power ON

Turn on the operating power. The displays, etc., light when power is supplied to the controller.

3. Measuring range setting

Select code from Measuring Range Codes of " $4-61$ Measuring range codes setting screen" of 4 screen group and enter. Select temperature unit of "4-62 Input unit setting screen" of 4 screen group and enter.
For current, voltage and mV input, set lower limit value, higher limit value and position of decimal point of display contents for input signal.
(You should also select by 4-63, 4-64 and 4-65 screens by code.)

4. Control mode (PID) setting

For ON-OFF (2 position) action, select OFF by " $2-1$. Output 1 PID1 proportional band setting screen" of 2 screen group and enter. Sets hysteresis by " $2-2$. Output 1 PID1 hysteresis setting screen."
If equipped with output 2 , set by same method.
If using auto tuning (AT) with other than ON-OFF hysteresis, this setting operation is not required.

5. Control output characteristics setting

Select RA (for heating) or DA (for cooling) according to output specification (heating/cooling) on "4-49 Output 1 output characteristics setting screen" and "4-52 Output 2 output characteristics setting screen" of 4 screen group and enter.

6. Event type setting

If equipped with event, select types of event on "4-3, 4-8and 4-13 Event type setting screen" of 4 screen group and enter.

7. Analog output setting

If equipped with analog output, select items to be output as analog signals on "4-24 Analog output type setting screen" of 4 screen group and enter.

8. Precaution concerning initialization by data modification

Modifying measuring range code, type of event or type of analog output initializes related setting values (data). The data must therefore be set again.

4. Names and functions of parts on front panel

Name	Function
(1) Measured value (PV) display	(1) Measured value display LED (red) - Displays current measured value (PV) on basic screen (screen 0-0). - Displays type of parameter on each respective parameter display screen.
(2) Target set value (SV) display	(2) Target value display LED (green) - Displays current target set value (SV) on basic screen (screen 0-0). - Displays setting values on each respective parameter setting screen.
(3) Action display	Displays status of controller. - RUN: Action display LED (green) Off: Control halt status (standby or reset) On: Running by fixed value control status (FIX) Flashing: Running by program control status (RUN) - AT: Auto tuning LED (green) Off: Auto tuning not executed On: Auto tuning standby Flashing: Auto tuning being executed - MAN: Manual control LED (green) Off: Automatic control operating status Flashing: Manual control operating status - OUT1: Control output 1 (green) - OUT2: Control output 2 (green) For output by contact or SSR drive voltage: Off: Output is OFF. On: Output is ON. For voltage/current output: Brightness changes according to the output ratio. (Light illuminates brightly when output is 100% and dimly when output is 0%.) - EV1: Event output 1 (orange) - EV2: Event output 2 (orange) - EV3: Event output 3 (orange) Off: Event output is OFF. On: Event output is ON. Note: Always off when event output is not selected as an optional item. - COM: Communication mode (green) Off: Communication LOC mode On: Communication COM mode Note: Always off if communication function is not selected as an optional item.
(4) Operating keys	- ® : Parameter key Displays the next screen in various screen groups Pressing and holding for at least 3 seconds on 0-0 screen displays 4-0 initial settings screen group. : Down key Decrements setting values. : Up key Increments setting values. - ENT : Enter key Enters setting values. Displays various screen groups if no SV values are being modified on the basic screen. RUWS: RUN/RST key Pressing and holding for at least 2 seconds in STBY (RST) status switches to EXE (RUN). Pressing and holding for at least 2 seconds during EXE (RUN) switches to STBY (RST). status. Fixed value control (FIX mode) STBY: Standby status EXE: Control execution status Program control (PROG mode) RST: Reset status RUN: Program execution status

5. Parameter diagram and setting

5-1. Parameter diagram

The overview of the parameter diagram is as follows. The windows of the various screens are divided as follows. The number at the top left of the window is the screen No.
\qquad

Screen always displayed by key operation, etc.

Screen displayed when concerned optional item is added

Screen to be shown or hidden according to the setting
Programming function / communication function related screens Screens explained by respective function instruction manuals

No monitor screen (3 minutes auto return)

5-2. Display when power is applied

When power is applied, the initial screen when power is applied displays each screen for about 1 sec . and switches to the basic screen of screen group 0 as shown in the following figure.

(For current mA input, select voltage input after providing receiving impedance of 250Ω externally.)
Indicates control output 1

Indicates control output 2

Lower limit value of selected measuring range
Higher limit value of selected measuring range

0-0 basic screen, 0 screen group from here
Measured value (PV): Switches to screen for setting various functions by operation key from "0-0 basic screen."
Target set value (SV): For screen sequence, see parameter diagram on previous page.
You can set PV/SV to be displayed or masked by the settings of "4-66. Basic screen display mode."

5-3. Switching screens

Within 0 screen: Screen group primarily set by end users.
Screen group 1: Target set value setting screen group (multi SV).
Screen group 2: Screen group that sets PID constant.
Screen group 3: Displayed if equipped with programming function (optional). See "Programming Function Instructions."
Screen group 4: Screen group primarily set by manufacturer / equipment maker. (Initial setting screen group)
(1) Switching screens within screen group 0

Each time the key is pressed the screen display switches to the next screen. If pressed when the last screen is displayed, returns to the 0-0 basic screen.

0-0 Basic sc	0-1 Standby screen			0-2 Output 1 monitoring		0-17 Latching release screen		
$\underline{815}$	(c)	ES\%	Q	ESG	:	(O日兵	
0		$E \cdot E$		050			-5t!	

(2) Switching between screen group 0 and screen group 1

Pressing the ENT key on the basic screen of screen group 0 switches to "1-0 initial screen" of screen group 1.

(3) Switching screens within screen group 1

Each time the key is pressed on the "1-0 initial screen" in screen group 1, the screen display switches to the next screen. If pressed when the last screen is displayed, returns to the "1-0 initial screen."
With screen group 1, each time the RNM key is pressed, the screen is switched in the reverse direction.

（4）Switching to screen group 2

Pressing the ENT key on the＂1－0 initial screen＂switches to the＂2－0 initial screen＂of screen group 2.

Screen group 0 0－0 Basic screen

Screen group 1

Screen group 2

 2－0 Initial screen| | Eir | F_{5}^{51} | Eirf | Finit |
| :---: | :---: | :---: | :---: | :---: |
| \％it | | 56 | | SEt |

（5）Switching screens within screen group 2
The＂2－0 initial screen＂in screen group 2 is the PID1 setting initial screen．Each time the Δ key is pressed，the setting initial screen switches PID2 \rightarrow PID3 \rightarrow PID1．Pressing the ∇ key switches PID1 \rightarrow PID3 \rightarrow PID2．

Each time the key is pressed the screen display switches from the various initial screens to the next screen．If pressed when the last screen is displayed，returns to the＂ $2-0$ initial screen．＂
With screen group 2，each time the emw key is pressed，the screen is switched in the reverse direction．

（6）Switching to screen group 3
Screen group 3 is the program screen group．It is not displayed unless it is set as an optional item．
Pressing the arr key on the＂2－0 initial screen＂switches to the＂ $3-0$ initial screen＂of screen group 3 ．
Further pressing the key kwitches to the basic screen．

Screen group 0$0-0$ Basic screen		Screen group 1		Screen group 2		Screen group 3 3－0 Initial screen		
		PID Initia						
$\underline{\square}$	Eir			$F_{5}{ }^{-1}$	Eir	Forit	Eir	Fー日灾
0.08		GEt		SEt		F！ri		

For more information on the programming function，see the＂Programming Function Instructions．＂

（7）Switching to screen group 4

Screen group 4 is the initial setting screen group．Various settings are made prior to using the controller．
Pressing the \varnothing key on the basic screen of screen group 0 for at least 3 seconds switches to＂ $4-0$ initial screen＂of screen group 4
Pressing the key on the＂ $4-0$ initial screen＂of screen group 4 for at least 3 seconds switches to the basic screen of screen group 0 ．

（8）Switching screens within screen group 4

Each time the Ω key is pressed screen display switches from the initial screens to the next screen．If pressed when the last screen is displayed，returns to the＂4－0 initial screen．＂ With screen group 4，each time the mey is pressed，the screen is switched in the reverse direction．

（9）Set data modification
Data is modified on the various screens by pressing the Δ or \boldsymbol{V} key．The modified data is entered by pressing the keir key．

5-4. Auto return function

If no key operation is conducted for 3 minutes on the various screens (with the exception of the " $0-2$ output 1 monitoring screen", " $0-3$ output 2 monitoring screen", " $0-4$ step No. monitoring screen", " $0-5$ remaining time of step monitoring screen", " $0-6$ number of pattern execution monitoring screen", "0-7 Execution PID No. monitoring screen", " $0-10$ heater current 1 monitoring screen" or " $0-11$ heater current 2 monitoring screen"), the mode automatically returns to the " $0-0$ basic screen" of screen group 0 (auto return).

5-5. Screen group 0 setting

The flow is given in "6. Screen description and setting items." This section however primarily contains a description of how to make settings.
As for the key operation method, the σ key switches to the next screen. The settings are selected with the Δ key or ∇ key on the various setting screens and entered with the ear key.
Pressing the Ear key is however not required for modifying output values on the output monitoring screen for manual adjustment.

(1) Setting target set values (SV)

1. To set target set values (SV), press the Δ key or ∇ key on the " $0-0$ basic screen." Pressing and holding the key causes the decimal point of the lowest digit to flash, and the value is incremented or decremented. When the desired target set value is reached, enter by pressing the Eirl key.
2. When the setting is entered, the decimal point of the lowest digit of the target set value stops flashing.

Target values cannot be set while auto tuning (AT) is being executed. To set target values, you must first cancel auto tuning.
Example: Set target set value to $\mathbf{5 0 0 . 0}{ }^{\circ} \mathbf{C}$.

0-0 Basic screen

* If the target set values (SV) are masked in the "4-66. Basic screen display mode," SV values cannot be modified.

(2) Manual setting of control output

1) Output monitoring screen (OUT1/OUT2) and switching and setting automatic/manual output

To toggle between automatic and manual, press and hold the Eir key on the " $0-2$ output 1 monitoring screen" or " $0-3$ output 2 monitoring screen" or press the Eirl key and Δ keys simultaneously.
During manual output, the MAN lamp flashes and it goes off during the automatic output operation.
Pressing the Δ key or ∇ key on the output monitoring screen during manual output enables you to set the manual output values. To return to automatic output, press and hold the Eirl key for 3 seconds or press the Eirr and Δ keys simultaneously.

> Automatic output Manual output Manual output Antic output 0-2 Output monitoring screen
(1) Changing output action of either output 1 or output 2 to manual automatically changes the other to manual. Similarly, changing one to auto also automatically changes the other to automatic as well.
(2) If output of output 1 is 100.0%, 6 is displayed on the output 1 monitoring screen and the decimal point of
(3) If output of output 2 is 100.0%, 6 is displayed on the output 2 monitoring screen and the decimal point of flashes.
(4) If output is contact or SSR drive voltage and the proportional band (P) setting is OFF, the output value is 0.0% or 100.0%.
(5) If output is voltage or current and the proportional band (P) setting is OFF, the output value is the lower limit value or higher limit value of the output limiter set.
NOTE1: Manual output cannot be changed while automatic tuning (AT) is being executed. To change, you must first cancel AT.
NOTE2: If MAN is selected in "4-29-4-32 DI mode setting screen", external control input has a priority and manual output change cannot be conducted in 0-2 screen.

2) Supplementary explanation for use of manual control output

The correlation of the " $0-2$ output 1 monitoring screen" and " $0-3$ output 2 monitoring screen" and automatic/manual output is as follows:
(1) Output when automatic output is changed to manual is balanceless bumpless action, and the output value prior to change value is displayed.
When manual is changed to automatic, it becomes bumpless action except if measured value (PV) is outside the proportional band.
(2) If power supply is cut off and turned back on, control output action continues in automatic or manual mode, whichever was set when the power was shut off.
Note: You can switch to another screen in the manual mode as well, but you should note that control output is also manual mode. When the MAN monitor LED is flashing, the controller is in manual output mode (MAN).
(3) Manual output (MAN) is canceled if EXE (RUN) is switched to Stby (Rst).

- MAN operation is possible only in EXE (RUN) mode.

(3) Auto tuning (AT)

Function that automatically processes and sets parameter PID for PID control. Processing time varies according to control.

1) $A T$ execution

Pressing the Δ key on the " $0-15 \mathrm{AT}$ action control screen" causes the $\boldsymbol{\sigma} \boldsymbol{\sigma}$ display at the bottom to change to and the decimal point of the smallest digit to flash.
Pressing the air key then executes AT. The decimal point stops flashing and the AT lamp flashes.
When AT is executed, ON/OFF hysteresis of output is repeated several times according to increment or decrement of measured values. The PID value is saved in the internal memory and the action ends. Control based on the PID value in the memory simultaneously starts and the AT lamp stops flashing.

0-15 AT action control screen

Fit	\triangle key	Fit	Entkey	Fit	
二F\%	, ${ }^{\text {m }}$		Am	017	
				1	
	Decimal point flashes		Decimal point stops flashing AT lamp flashes		AT execution

2) Cancellation of $A T$

To cancel AT before it finishes, select $\boldsymbol{\nabla}$ with the $\boldsymbol{\sigma} \boldsymbol{F}$ key on the " $0-15$ AT action control screen." When the emr key is pressed, AT is cancelled. The decimal point and the AT lamp then stop flashing.

0-15 AT action control screen

Decimal point stops flashing AT execution AT lamp flashes

Decimal point flashes AT lamp flashes

Decimal point stops flashing AT lamp stops flashing

> Note: If AT is canceled before completeion, PID value is not changed.

3) AT cannot be executed

AT cannot be executed under any of the following conditions:
(1) Control output is manual. (AT screen not displayed)
(2) Standby (AT screen not displayed)
(3) Measured value (PV) is scaleover. (AT screen not displayed)
(4) Control output 1 proportional band (P) is OFF. (AT screen not displayed)
(5) If lock No. 2 or 3 is set on the key lock screen. (Not possible on AT screen, but possible with DI)
(6) If AT screen is masked or locked. (Not possible on AT screen, but possible with DI)

4) AT cancellation during execution

AT is canceled during execution under any of the following conditions:
(1) If 200 continuous minutes elapse while output value is 0% or 100%.
(2) When PV is scaleover.
(3) When switched to standby action.

5) AT action for 2-output specifications

With 2-output specifications, AT action changes according to RA/DA characteristics as follows:
(1) When OUT $1 / 2$ characteristics differ (RA/DA or DA/RA)

PID constant is same value for both output 1 and output 2 .
(2) RA characteristics for both OUT1/OUT2 or DA characteristics for both OUT1/OUT2

AT action is executed for output 1 only; OUT2 during AT execution is 0% output or output limiter lower limit value.
NOTE: During AT execution, any setting change cannot be conducted except for cancellation of AT, change to standby mode, key rock setting and change of transmission mode.

(4) Standby (STBY) / execution (EXE)

The controller is equipped with a standby mode for temporarily halting controller execution.
This operation mode is switched on the " $0-1$ standby action setting screen."
In the case of fixed value control (FIX mode), STBY (standby) / EXE (execution) is displayed.
In the case of program control (PROG mode), RST (reset: stop) / RUN (program execution) is displayed.
If EXE1 (RUN1) or EXE2 (RUN2) is selected on the "4-29 - 4-32 DI mode setting screen", external control input (DI) is given priority and settings cannot be made on the $0-1$ screen.
(1) The RUN lamp is lit green while the controller is operating and it goes off during standby.
(2) Controller output for standby is 0%.
(3) When standby is executed, auto tuning (AT) is canceled.
(4) When standby is executed in the manual input mode, the manual input mode is canceled.
(5) When the power is turned off while the controller is in standby mode, standby mode continues when the power is turned back on.
(6) If event standby action is specified when switching to execution mode (EXE) from standby mode (StbY), the specified standby action is executed.
(7) If event latching is not engaged in the standby mode, alarms (Hd, Ld, od, id, HA, LA) are not output.

(5) Event setting

Types of event must be set before setting event values.
Modifying the types of event code however initializes setting values (data) related to events.

1) Types of event (alarm type) setting

Select type code from among Hd, Ld, od, id, HA, LA, So, EXE(run), rot1, HC1, HC2, StPS, PtnS, EndS, HoLd, ProG, u_SL, d_SL, GUA on the "4-3 event 1 type setting screen of screen" group 4 with the Δ key / ∇ key and enter the event type with the ${ }_{\text {Eirl }}$ key.
Set event 2 and event 3 on the " $4-8$ event 2 type setting screen" and "4-13 event 3 type setting screen" in the same manner.
The types of event for which event values can be set are the following 6 types:
Event type (alarm type) code:
If an event type code other than the above is selected, event values cannot be set.

2) Event values setting

Event values are set on the "0-12 FIX event 1 setting values setting screen", " $0-13$ FIX event 2 setting values setting screen" and " $0-14$ FIX event 3 setting values setting screen." Type of event is displayed when one of the previously mentioned 6 types of events is selected.
Event values are set by selecting setting range by pressing the Δ key / ∇ key on the $0-12,0-13$ or $0-14$ screen.
When the event value setting has been decided, enter by pressing the emey and the decimal point stops flashing.

Setting range: Higher limit deviation or lower limit deviation
Outside or inside higher/lower limit deviation
Higher limit absolute value or lower limit absolute value

$$
\begin{aligned}
& -1999-2000 \text { digit } \\
& 0-2000 \text { digit } \\
& \text { Within measuring range }
\end{aligned}
$$

* Definition of unit

Used as a minimum unit for industrial amounts such as ${ }^{\circ} \mathrm{C}$ and $\% \mathrm{RH}$.
If input temperature range is $0.0-200.0,1$ digit $=0.1^{\circ} \mathrm{C}$.
If input temperature range is $0-1200,1$ digit $=1^{\circ} \mathrm{C}$.
Event values cannot be set during auto tuning (AT) execution. AT must first be canceled.
0-12 FIX event 1 setting values setting screen

(6) Multi SV (target set values)

1) Multi $S V$

You can set 3 types of target set values (SV). (SV1, SV2, SV3)
SV values are set on the "1-3-1-5 FIX control SV1 - SV3 setting screen" and execution SV No. is selected on the "1-2 execution SV No. selection screen."
PID No. during multi SV is SV1/PID1, SV2/PID2 and SV3/PID3.
2) External selection switching of multi SV

If equipped with external control input DI, if ESV2 is allocated to DI, execution SV can be selected from among SV1 - SV3 by DI input.
Using 2 points of DI, DI to be used for SV selection is allocated on "4-29, 4-30 DI1 and DI2 mode setting screen."
ESV2 can be allocated only to DI1 or DI2.

6. Screen explanation and setting items

0-15 $\downarrow \quad$ Auto tuning (AT) action control screen

Initial value: oFF
Setting range: oFF, on
AT is executed by on selection and is canceled by oFF selection. This screen is not displayed for manual output or for output 1 proportional band (P) OFF setting
Not displayed if STANDBY is set for $0-1$ standby action setting screen. During AT execution, key operation other than AT cancel, key lock setting and communication mode is not accepted. For AT action, see 5-5 (3).
Start pattern No. monitoring screen
Not displayed if there is no programming function.
Initial value: 1
Setting range: 1, 2, 3, 4
Differs according to number of patterns (max. 1, 2, 4)

FIX control (fixed value control) setting

PID setting

PID setting screen group

With the SRS10A Series, you can have 3 types of PID constants. In the case of fixed value control (FIX), target set values SV1, SV2 and SV3 correspond to PID1, PID2 and PID3 respectively.
In the case of program control, an execution PID No is allocated to each step.

The numbers at the end of the upper display are PID No.s that correspond to SV1, SV2 and SV3 respectively.
Pressing the Δ key displays the screen in the order of PID1 \rightarrow PID2 \rightarrow PID3 \rightarrow PID1.
Pressing the $\mathbf{\nabla}$ key displays the screen in the order of PID $1 \rightarrow$ PID $3 \rightarrow$ PID2 \rightarrow PID1. Pressing the 国 key on these screens switches to screen group 3 (equipped with programming function) or the basic screen.

There are no setting items for this screen. Pressing the \square key displays the initial output 1 PID1 proportional band (P) setting screen.
Pressing the 迅 key displays the last output 2 higher limit setting screen.

Note : Set PID2 and PID3 on the 2-0 - 2-16 screens just as with PID1.

2-1 \downarrow Output 1 PID1 proportional band (P) setting screen

i, Fi	3.0

Setting range: oFF, $0.1-999.9$ (\%)
There is basically no need to set if auto tuning (AT) is executed. For information on proportional band, see 8-3 (1). If oFF is set, ON-OFF (2 position) action is set.

2-2 Output 1 PID1 hysteresis (dF) setting screen

Initial value: 20 (digit)
Setting range: 1 - 999 (digit)
Sets "hysteresis" for ON-OFF action.
Displayed if $\mathrm{P}=\mathrm{oFF}$ is set on 2-1 screen.
Actions differ depending upon 4-67 Hysteresis modes set.
2-3 Output 1 PID1 integral time (I) setting screen

To 2-4 screen

Initial value: 120 (seconds)
Setting range: oFF, $1-6000$ (seconds)
There is basically no need to set if auto tuning (AT) is executed.
For information on integral time, see 8-3 (2).
This screen is not displayed when $\mathrm{P}=\mathrm{OFF}$.

2-4 \downarrow Output 1 PID1 derivative time (D) setting screen

i	$6 i$
$3 i=1$	

Initial value: 30 (seconds)
Setting range: oFF, $1-3600$ (seconds)
There is basically no need to set if auto tuning (AT) is executed.
This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$.
For information on derivative time, see 8-3, section (3).

Output 1 PID1 manual reset (MR) setting screen

\% 517	

Initial value: $0.0 \% ; 2$ - output specification: -50.0 (\%) Setting range: -50.0-50.0 (\%)

Offset is conducted when $\mathrm{I}=\mathrm{oFF}$. (P / PD action)
This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$.
For information on manual reset, see 8-3, section (4)

2-6 \downarrow Output 1 PID1 target set value function (SF) setting screen

Initial value: 0.40
Setting range: oFF, $0.01-1.00$
Used for suppressing overshoot and undershoot for expert PID. Overshoot for $\mathrm{SF}=1.00$ is minimal. With $\mathrm{SF}=\mathrm{oFF}$, there is ordinary PID action without expert PID. This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$.

2-7 Output 1 PID1 lower limit output limiter setting screen

Initial value: 0.0 (\%)
Setting range: $0.0-99.9$ (\%)
Sets control output 1 lower limit value
For information on output limiter, see 8-4 (1).

2-8 \downarrow Output 1 PID1 higher limit output limiter setting screen

Initial value: 100.0 (\%)
Setting range: $(1 \mathrm{oL} 1$ setting value $)+0.1-100.0(\%)$

Sets control output 1 higher limit value.

Output 2 PID1 proportional band (P) setting screen

Initial value: $3.0(\%)$
tting range: oFF, $0.1-999.9(\%)$
Same as output 1 proportional band setting screen.
Displayed if optionally equipped with output 2 .
Output 2 PID1 hysteresis (dF) setting screen

2-11 \downarrow Output 2 PID1 integral time (I) setting screen
Initial value: 120 (seconds)
Setting range: oFF, $1-6000$ (seconds)
Same as output 1 integral time setting screen.

This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$.

2-12 Output 2 PID1 derivative time (D) setting screen
$\frac{2}{2}-\frac{1}{36}$

๑ \downarrow
To 2-13 screen

Initial value: 30 (seconds)
Setting range: OFF, $1-3600$ (seconds)
Same as output 1 derivative time setting screen.
This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$

Heater break／loop alarm settings
Can be used if event option and CT input option is eguipped．
4－18 Heater 1 break／loop alarm mode setting screen

$\frac{x-1011}{a n t i t}$	

Initial value：out1
Setting range：out 1 ，out2

Sets control output by which heater break／loop alarm is output by current detection by CT1．
Can be set only for control output Y or P
4－18－4－23 will be displayed if output of control output 1 or 2 is Y or P ，and CT input is selected at the same time．

4－19 \downarrow Heater 1 break alarm action value setting screen
$\frac{5 i B 6}{65 F}$

Initial value：oFF
Setting range：oFF， $0.1-50.0$（A）
Sets current value of heater break alarm detected by CT1．
When control output is ON，an alarm is output if the current value detected by CT1 is lower than the setting．

4－20 Heater 1 loop break alarm action value setting screen

 $\frac{B 1 H i}{B E}$Initial value：oFF
Setting range：oFF， $0.1-50.0$（A）

Sets current value of heater loop alarm detected by CT1． When control output is OFF，an alarm is output if the current value detected by CT1 is higher than the setting．

4－21 Heater 2 break／loop alarm mode setting screen

Heater 2 break alarm action value setting screen

Heater 2 loop break alarm action value setting screen

Setting range：oFF， $0.1-50.0$（A）
Q Sets current value of heater loop alarm detected by CT2． When control output is OFF，an alarm is output if the current value detected by CT2 is higher than the setting．

Analog output settings

4－24 Analog output type setting screen

out2（Oいいに゙ージ）
Item to be output as analog signal is set from among 4 items： measured value（PV），target set values（SV），control output 1 （out1）and control output 2 （out2）．
$4-24-4-28$ is not displayed if analogue output is not selected．
4－25 Analog output scaling lower limit value setting screen $\frac{\operatorname{Aa}}{10}$

Initial value： 0.0
（For PV／SV，measureing range lower limit value； out1／out2 is 0.0 ）
Setting range：When PV or SV is selected，within measuring range When out1 or out2 is slected： $0.0-100.0(\%)$

Minimum values of analog output signal $(0 \mathrm{mV}, 4 \mathrm{~mA}, 0 \mathrm{~V})$ are set as scaling minimum value to be output．
Initial value：out1
Setting range：out 1 ，out2

Sets control output by which heater break／loop alarm is output by current detection by CT2．
Can be set only for control output Y or P．

Initial value：oFF
Setting range：oFF， $0.1-50.0$（A）

Sets current value of heater break alarm detected by CT2
When control output is ON，an alarm is output if the current value detected by CT2 is lower than the setting．

Initial value：oFF
\qquad

4－26 \downarrow Analog output scaling higher limit value setting screen $\frac{B 6-M}{6} \quad$ Initial value： 800.0 （For PV／SV，measureing range higher limit value； out1／out2 is 100．0）
Setting range：When PV or SV is selected，within measuring range
When out 1 or out 2 is slected： $0.0-100.0 \%$
Maximum values of analog output signal $(10 \mathrm{mV}, 20 \mathrm{~mA}, 10 \mathrm{~V})$ are set as scaling maximum value to be output．

Inverse scaling is possible for Ao ＿ $\mathrm{L}>\mathrm{Ao}$＿H．
（Min． $\mathrm{H}-\mathrm{L}= \pm 1$ count）
Characteristics by analog output scaling are as follows：

If ESV2／Ptn2 is allocated to DI1，DI2 cannot be selected． If Ptn3 is allocated to DI1，DI2 and DI3 cannot be selected．
A single type of code cannot be allocated to more than one DI．

4－30 $\downarrow \quad$ DI2 mode setting screen

Initial value：non
Setting range：non，EXE1（run1），EXE2（run2），mAn，At，ACt1，
ACt2，ProG，HLD，AdV，L＿rS

Communication settings

For communication function，see the Communications Interface Instruction Manual．
4－33－4－47 is displayed if communication function is selected．

ロロバテ							
	Initial value：Loc（ Setting range：Loc，Com（aris［Com］）						
Can be changed from Com to Loc with the front surface key． Communication is made possible by mode displayed on bottom							
4－34 \downarrow Communication address setting screen							
Initial value： 1Setting range： StoP，mASt，1－255							
（）	Sets device No．when multiple controllers are connected for communication． Setting to StoP suspends master function．						
$35 \downarrow$ Communication data format setting screen							
环EF							
Initial value：7E1 Setting range：7E1							
Sets data format for communications．							
	$\begin{gathered} \text { ASCII } \\ \text { RTU } \end{gathered}$	Data length	Parity	Stop bit	Shima	MODBUS	
					den	ASCII	RTU
	75 ！	7 bits	Even	1 bit	\bigcirc	\bigcirc	－
	FEE	7 bits	Even	2 bits	\bigcirc	\bigcirc	－
	7ni	7 bits	None	1 bit	\bigcirc	\bigcirc	－
	7\％	7 bits	None	2 bits	\bigcirc	\bigcirc	－
	EE	8 bits	Even	1 bit	\bigcirc	－	\bigcirc
	EEE	8 bits	Even	2 bits	\bigcirc	－	\bigcirc
	EA	8 bits	None	1 bit	\bigcirc	－	\bigcirc
	E日畐	8 bits	None	2 bits	\bigcirc	－	\bigcirc

4－36 \downarrow Start character setting screen

4－42 Communication master mode setting screen

		4－42－4－47 screens are displayed only when master m selected on the $4-34$ communication address setting sc Initial value：SV
\square		Setting range：SV，PV，out1，o1SC，out2，o2SC
4－43		unication master control output scaling limit value setting screen

4－44 Communication master control output scaling

higher limit value setting screen

Displayed only when O1SC／O2SC is selected on the 4－42 Master mode setting screen． Initial value：Higher limit value of measuring range Setting range：（M＿SL setting value）$+10-9999$

$\frac{5-7,1}{1}$
Initial value： 1
Setting range：bcAS， $1-255$

\section*{bcAs：Broadcast
 | $\square-46$ | Communication master mode end slave address |
| :---: | :---: | setting screen}

Not displayed for bcAS（broadcast）
Initial value： 1
Setting range：Start address－start address＋ 30

4－47 Communication master mode write－in data address setting screen

	Initial value： $0300(\mathrm{H})$
	Setting range： $0000(\mathrm{H})$－FFFF（H）

Initial value: Contact output: 30 (seconds),
SSR drive voltage output: 3 (seconds)
Setting range: $1-120$ (seconds)
Sets control output 1 proportional cycling time. Not displayed when output type is voltage or current. For information on proportional cycling time, see 8-4 (2)

4-49 Control output 1 characteristics setting screen

Control output 1 soft start time setting screen

Initial value: oFF
Setting range: oFF, $1-120$ (seconds)
Sets soft start time that gradually changes output.
Does not function if oFF is set.
For details, see 8-6.

Output 2 proportional cycling time setting screen
Initial value: Contact output: 30 (seconds),
SSR drive voltage output: 3 (seconds)
Setting range: $1-120$ (seconds)

Sets control output 2 proportional cycling time.
Displayed if Y, P is selected for control output 2 .

Control output 2 characteristics setting screen

Initial value: dA (
Setting range: rA $(\boldsymbol{-}, \boldsymbol{F})$, dA
Sets characteristics of control output

- F\%(RA) : Reverse characteristics (for heating)
(DA) : Direct characteristics (for cooling)
Displayed if Y, I, P, V is selected for control output 2.
4-53 \downarrow

Control output 2 soft start time setting screen

Initial value: oFF
Setting range: oFF, $1-120$ (seconds)
Sets soft start time that gradually changes output.
Does not function if oFF is set.
For details, see 8-6.
Displayed if Y, I, P, V is selected for control output 2.
4-54 SV limiter lower limit setting screen
Initial value: Lower limit value of measuring range
Setting range: Lower limit value of measuring range to higher limit value of measuring range - 1 count

If using setting range of target values below measuring range: Set lower limit value.
(Able to prevent incorrect setting in danger range, etc.)
4-55 SV limiter higher limit setting screen
Sin - i-i
Initial value: Higher limit value of measuring range Setting range: Lower limit value of SV limiter +1 count to higher limit value of measuring range

If using setting range of target values below measuring range: Sets higher limit value.
(Able to prevent incorrect setting in danger range, etc.)
Note: For SV limiter setting, the lower limit value is given preference when SV limiter lower limit value is less than higher limit value. Consequently, higher limit cannot be set less than lower limit value +1 count.

If Sc_L/Sc_H are changed, the respective values are set for SV L/SV H.
Number of patterns setting screen
(Displayed only when programming function is selected)

Initial value: 4

4-62 Input unit setting screen

Initial value: c (\boldsymbol{E})
Setting range: c, $F(\boldsymbol{F})$
Temperature unit for sensor input is set to $\mathrm{C}\left({ }^{\circ} \mathrm{C}\right)$ or $\mathrm{F}\left({ }^{\circ} \mathrm{F}\right)$.
Not displayed if linear input $(\mathrm{mV}, \mathrm{V})$ is selected.
$\mathrm{K}\left(\boldsymbol{\beta}^{-6}\right)$ is displayed if measuring range code is $15-18$ (in kelvin).
Modification of unit is only possible when in standby mode.
4-63

Input scaling lower limit value setting screen

Initial value: 0.0 (digit)
Setting range: -1999-9989 (digit)
Sets scaling lower limit value for linear input (mV, V).
Cannot be set by monitoring screen for sensor input.

4-64 Input scaling higher limit value setting screen
5に. H
Initial value: 100.0
Setting range: (Sc_L setting value) $+10-\left(\mathrm{Sc} _\mathrm{L}\right.$ setting value $)$ $+10,000$

Sets scaling higher limit value for linear input (mV, V).
Cannot be set by monitoring screen for sensor input

4-65

Initial value: 1 digit following decimal point (0.0)
Setting range: No decimal point (0) - 3 digits following decimal point (0.000)
Except for linear input, no decimal point (0) - 1 digit following decimal point (0.0)

Sets decimal point position for input scaling.
Range with no decimal point cannot be set by monitor alone.

Initial value: $\operatorname{PVSV}(\overrightarrow{6} 5 \boldsymbol{6}$
Setting range: PVSV / PV (

$$
\text { /ALRM }(F i=1, \overline{1})
$$

PVSV : Normal display (both PV and SV displayed)
PV : PV value only displayed
SV SV SV Canno be
ALRM : When an alarm is issued, the PV value and "ALM*" are displayed alternately on the basic screen. (*:1~3)

Hysteresis mode

Sets hysteresis mode when ON/OFF action is selected.
The set mode will be reflected in all of the following: OUT $1 / 2$ and PID1/2/3.
Initial value: CENT (\boldsymbol{E} にか)

CENT: Mode for making the center position of hysteresis SV value SVOF: Mode for making the output OFF position of hysteresis SV value SVON: Mode for making the output ON position of hysteresis $S V$ value For details, see 8-4 (4).

4-68 Parameter Initialization

Initializes execution bank parameter and put it to factory shipment status.

Initial value: oFF
Setting range: Off, oN
Cannot be changed during execution.
Display is returned to "oFF" after initialization.
To 4-0 screen
7. Measuring Range Codes

Select measuring range from the following table.
Note:Changing the code initializes all data related to measuring range.
Change setting with standby mode on 0-1 screen.

Thermocouple: B, R, S, K, E, J, T, N, C: JIS/IEC R.T.D. Pt100: JIS/IEC JPt100
*1. Thermocouple B: Accuracy guarantee not applicable to $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)$ or below.
*2. Thermocouple K, T, U: Accuracy of those readings below $-100^{\circ} \mathrm{C}$ is $\pm(0.7 \% \mathrm{FS}+1$ digit $)$
*3. Thermocouple PLII: Platinel
*4. Thermocouple U, L: DIN 43710
*5. Thermocouple K (Kelvin) accuracy
*6. Thermocouple Metal-chromel (AuFe-Cr) (Kelvin) accuracy
$10.0 \sim 30.0 \mathrm{~K} \quad \pm\left(2.0 \% \mathrm{FS}+40^{\circ} \mathrm{C}+1\right.$ digit $)$
$0.0 \sim 30.0 \mathrm{~K} \quad \pm\left(0.7 \% \mathrm{FS}+6^{\circ} \mathrm{C}+1\right.$ digit $)$
$30.0 \sim 70.0 \mathrm{~K} \quad \pm\left(1.0 \% \mathrm{FS}+14^{\circ} \mathrm{C}+1\right.$ digit $)$
$30.0 \sim 70.0 \mathrm{~K} \quad \pm\left(0.5 \% \mathrm{FS}+3{ }^{\circ} \mathrm{C}+1\right.$ digit $)$
$70.0 \sim 170.0 \mathrm{~K} \quad \pm\left(0.3 \% \mathrm{FS}+2.4^{\circ} \mathrm{C}+1\right.$ digit $)$
$170.0 \sim 280.0 \mathrm{~K} \quad \pm\left(0.3 \% \mathrm{FS}+\quad 2^{\circ} \mathrm{C}+1\right.$ digit $)$
$280.0 \sim 350.0 \mathrm{~K} \quad \pm\left(0.5 \% \mathrm{FS}+\quad 2^{\circ} \mathrm{C}+1\right.$ digit $)$
$170.0 \sim 270.0 \mathrm{~K} \quad \pm\left(0.5 \% \mathrm{FS}+3^{\circ} \mathrm{C}+1\right.$ digit $)$
$270.0 \sim 350.0 \mathrm{~K} \quad \pm\left(0.3 \% \mathrm{FS}+2^{\circ} \mathrm{C}+1\right.$ digit $)$
*7. R.T.D. : accuracy is $\pm(0.3 \% \mathrm{FS}+1$ digit $)$

NOTE: Unless otherwise specified, the measuring range will be set as follows when shipped from the factory:

Input	Standard/rating	Measuring range
Multi input	K thermocouple	$0.0 \sim 800.0^{\circ} \mathrm{C}$
Voltage (V)	$0 \sim 10 \mathrm{~V}$ DC	$0.0 \sim 100.0$, no unit

8. Explanation of functions

This section contains a description of operation not covered in " $5-5$. Screen group 0 setting."

8-1. Events

(1) Alarm action

1) Deviation alarm

Sets alarm action points for deviation of measured values (PV) from target set values (SV).
For example, to trigger an alarm when measured value (PV) of $30^{\circ} \mathrm{C}$ or more when target set value is $20^{\circ} \mathrm{C}$, the higher limit deviation alarm is set to $10^{\circ} \mathrm{C}$.
Or to trigger an alarm when measured value (PV) of $30^{\circ} \mathrm{C}$ or less when target set value is $100^{\circ} \mathrm{C}$, the lower limit deviation alarm is set to $-70^{\circ} \mathrm{C}$.
This is convenient if you want alarm action point to be in accordance with deviation from target set values. The setting range is -1999 - 2000 digit.
2) Absolute value alarm

Sets alarm action point by absolute value. Higher limit absolute value alarm and lower limit absolute value alarm can be set at any point within measuring range.
For example, to trigger an alarm when measured value reaches $50^{\circ} \mathrm{C}$ or higher, set the higher limit absolute value alarm to $50^{\circ} \mathrm{C}$. Or to trigger an alarm when measured value reaches $20^{\circ} \mathrm{C}$ or lower, set the lower limit absolute value alarm to $20^{\circ} \mathrm{C}$.

3) Standby action

If event standby action is set to 1 (or 2), when power is applied, an event is not output even if the measured value is in the alarm action area (ON area) for target setting value change or standby cancel.
Once outside the alarm action area (OFF area) and standby action is canceled, an event is output when it once again enters the alarm action area.
4) Non-standby action

If event standby action is set to OFF and 3, an event is always output when the measured value is within the alarm action area.

5) Control mode

If standby action is set to 3 , alarm is not triggered during scaleover.

(2) Event standby action selection

The following are supplementary explanations of operation with "4-5, 4-10 and 4-15 event code standby action setting screen" of screen group 4 .
(1) If using event output as an alarm, set from 1 or 2 of standby action code table.
(2) If using event output for control, set 3 (control mode). If 3 is set, however, event output remains OFF for abnormal input.
(3) If set to 1 , standby action functions when power is applied or standby is cancelled.
(4) If set to 2 , standby action functions when power is applied, when standby is canceled and when execution SV is changed.

- NOTE1: Standby action is canceled immediately if changed to OFF or 3 during standby action.

NOTE2: During scaleover, standby action is canceled.

(3) Event selection alarm action diagrams

The following are alarm action diagrams for selecting event (EV1/EV2/EV3).
Δ : SV value
$\mathbf{\Delta}$: Alarm action point setting value

Hif: Higher limit deviation alarm
in: Lower limit deviation alarm
6 Ef: Outside higher/lower limit deviation alarm

HF: Higher limit absolute value alarm

- Inside higher/lower limit deviation alarm

: A: Lower limit absolute value alarm

(4) Output 1 inverted output

If equipped with contact output for output 1 , inverted output can be executed for output 1 by selecting rat \boldsymbol{f} (output 1 inverted output) for the event code. Output is, however, OFF for both output 1 and event when the power is off. Also, inverted output for output 1 can be executed as well during standby.

(5) Event status output action

(8) Mロ! HOLD
(9) Frer PROG
(10) -1.
(11)

Fixed value control (FIX mode) output during control action.
Output during program execution during program control.
Output during alarm action of either heater 1 break/loop.
Output during alarm action of either heater 2 break/loop.
Step signal Ouput for 1 second each time step in program control execution is completed.
Pattern signal Ouput for 1 second each time pattern in program control execution is completed.
Program end signal Output for 1 second when program control execution is completed. (Output even if program is forcibly completed halfway.)
Hold signal Output when holding (temporary halt of program) during program control. Program signal Output when set to program mode.
Up slope signal Output during up slope step execution during program control.
Down slope signal Output during down slope step execution during program control. Guarantee soak signal Output when guarantee soak is engaged.

8-2. Heater break/loop alarm

Heater break/loop alarm can be used only in control output Y (contact) or P (SSR drive voltage output). Heater break/loop alarm becomes effective if CT input or event output is equipped.
Heater break alarm outputs an alarm if the current value detected by CT when control output is ON is lower than the setting. Heater break check is disabled if control output is OFF. Heater break status in the latest output-ON period is maintained. Heater loop alarm also outputs an alarm if the current value detected by CT when control output is OFF is higher than the setting. Heater loop check is disabled if control output is ON. Heater loop status in the latest output-OFF period is maintained. In the SRS10A series, 2 points of CT input is equipped if the CT input option is selected.
Any break of 2 heating stages control heater or three-phase heater can be detected by using two CT.

For 2 heating stages

For three-phase

8-3. P.I.D.

(1) P (Proportional action)

Sets percentage at which control output varies for measuring range. The size of control output varies according to ratio of PV value to $S V$ value.
Slight proportional band variation results in strong proportional action. If it is too slight, control vibrates and the results of control are similar to ON-OFF action.

(2) I (Integral time)

Function that corrects offset (constant deviation) produced by proportional band. The longer the integral time, the weaker the corrective action and the shorter the time, the stronger the action is, but control may vibrate due to integral hunting.

(3) D (Derivative time)

Enhances stability by estimating change in control output and suppressing integral overshoot.
The longer the derivative time, the stronger derivative action is, but control results may be similar to vibration.
（4）MR（Manual reset）
With PID action＂ I ＂is automatically offset，but if＂ I ＂is OFF，it is not offset．If so，it can be offset by manually increasing／ decreasing output．This is called＂manual reset．＂
（5）SF（Target value function）
This function determines the strength of the overshoot preventing function when operating expert PID．
Expert PID suppresses overshoot by conducting operation for predicting and canceling the amount of overshoot by referring to the PID value and the variation of PV value when it reached the targeted setting value（SV）（or the proportional band）．
Target value function is effective only when there is an integral operation（PI，PID operation）．
$\mathrm{SF}=\mathrm{OFF}$ ：Expert PID does not function and normal PID operates．
$\mathrm{SF}=1.00$ ：Minimize overshoot for expert PID contronl．
$\mathrm{SF} \rightarrow$ Small：Overshoot preventing function works limitedly．
$\mathrm{SF} \rightarrow$ Large：Overshoot preventing function works fully．

8－4．Control output

（1）Lower limit and higher limit limiter setting

（1）Output limiter limits minimum and maximum values of control output and helps securing minimum temperature and suppress control overshoot．
（2）Lower limit value is given priority for output limiter setting．If minimum value is set above the higher limit value，the higher limit value forcibly becomes the lower limit value $+1 \%$ ．
Higher limit value cannot be set less than lower limit value $+1 \%$ ．

（2）Proportional cycling time

The correlation between proportional cycling time and control output are as shown in the following figure．

（3）Control output characteristics

Control output characteristics can be set independently for output 1 and output 2.
For heating，set to RA（reverse action）and for cooling set to DA（direct action）．

Output characteristics

Control output with 2－output characteristics is as shown in the following figure．（1）is heating／cooling control and（2）is heat＋heat control．
（1）2－output heating／cooling action output characteristics

\triangle ：Target set values（SV）\triangle ：DB（dead band）
Dead band：Shifts proportional band of control output2 for setting value．
（4）Two－position action
When conducting two－position action，frequent switching of output ON／OFF is prevented by utilizing hysteresis．
（1）Hysteresis mode is CENT（ニロのに）：

RA action

（2）2－output heating／cooling action output characteristics

DA action

\triangle ：SV value
DF：Hysteresis

(2) Hysteresis mode is SVOF (EGG):

RA action

 RA action

DA action

DA action

8-5. External control input (DI)

Input must be retained for at least 250 ms to receive external control input of the SRS10A Series.
Assignment by DI input is conducted on the "4-29-4-32 DI mode setting screens."
Function assigned to DI cannot be conducted by key operation. (DI input is prioritized.)
However, AT and unlatching can be conducted by key operation even if assigned to DI.
(1) Controller action execution EXE1 (RUN1)

You can toggle between controller action execution/stop. Level action.
DI input OFF: Switches to standby (reset). SRS10A stops action.
DI input ON: Controller action is executed. PID operation control is executed (program control execution).

- NOTE: If DI is ON when power is applied, controller action is executed immediately after power is applied.
(2) Controller action execution EXE2 (RUN2)

Execution/stop is switched each time DI input is turned ON. (edge action).
NOTE: If DI is ON when power is applied, controller action is not executed immediately after power is applied.

(3) Manual output (MAN)

Switches to manual output. Level action.
DI input OFF: Ordinary feedback control action is executed.
DI input ON: Control output is executed manually; feedback control is not executed.
(4) Auto tuning execution (AT)

Auto tuning can be executed from outside. Edge action.
Once DI input is turned ON, auto tuning is executed.
If SV No. is switched by DI during AT execution, it is not applied until AT is finished.
AT in execution cannot be released by DI. Front key is used for releasing AT in execution ($0-15$ screen).
(5) SV external selection (ESV2)

Setting values of SV1 - SV3 can be switched to SV being executed. DI is level action using 2 points. Assignment to DI1 or DI2 can be set.
Assigning/setting SV external selection to DI1 automatically allocates it to DI2 as well, so DI2 cannot be selected. Assigning/setting SV external selection to DI2 automatically allocates it to DI3 as well, so DI3 cannot be selected.
When assigned to DI1

DI2	DI1	Selected SV No.
0	0	1
0	1	1
1	0	2
1	1	3

When assigned to DI2

DI3	DI2	Selected SV No.
0	0	1
0	1	1
1	0	2
1	1	3

SV No. and PID No. being executed correspond to SV1/PID1, SV2/PID2, and SV3/PID3.

Switches output characteristics of control output 1 (RA/DA).
When DI input OFF
: RA (heating)
When DI input ON: DA (cooling)
(7) Output 2 output characteristic (ACT2)

Switches output characteristics of control output 2 (RA/DA).
When DI input OFF : RA (heating)

When DI input ON: DA (cooling)
(8) Program (PROG)

You can switch FIX(fixed value control) and PROG(program) mode. Level action.
DI input OFF: FIX (fixed value control) mode
DI input ON: Program (PROG) mode
(9) Hold signal (HLD)

Program execution can be halted from outside. Level action.
DI input ON: Stops program step time.
(10) Advance (ADV)

Edge action.
During program control execution, once DI input is turned ON, the current step is completed, and operation forcibly advances to the next step.

(11) Start pattern external selection 2 bits (PTN2)

You can select the program start pattern. DI is level action using 2 points. Assigment to DI1 or DI2 can be set. Assigning/setting start pattern selection to DI1 automatically assigns it to DI2 as well, so DI2 cannot be selected. Assigning/setting start pattern selection to DI2 automatically assigns it to DI3 as well, so DI3 cannot be selected.
When assigned to DI1

DI2	DI1	Start pattern No.
0	0	1
0	1	1
1	0	2
1	1	3

When assigned to DI2

DI3	DI2	Start pattern No.
0	0	1
0	1	1
1	0	2
1	1	3

Start pattern No. 2 is executed if start pattern No. 3 is selected and number of pattern is set to 2 on 4-56 screen.
(12) Start pattern external selection 3 bits (PTN3)

You can select the program start pattern. DI is level action using 3 points; only DIl can be assigned/set.
Assigning/setting start pattern selection 3 bits to DI1 automatically assigns it to DI2 and DI3 as well, so DI2 and DI3 cannot be selected.

DI3	DI2	DI1	Start pattern No.
0	0	0	1
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	$*$	$*$	4

* SPT No. 4 regardless of ON/OFF.

Start pattern No. 2 is executed if start pattern No. 3 or
No. 4 is selected and number of pattern is set to 2 on 4-56 screen.
(13) Total unlatching (L_RS)

Events can be unlatched from outside. Edge action.
Once DI is turned ON, all event output is unlatched. Event output is however not unlatched if event output conditions have been satisfied.

8-6. Soft start

Soft start is a function that gradually increases control output by set time when power is applied, standby is canceled and operation is normally reset from scaleover. It is effective for preventing excessive current from being supplied to the heater, etc.
(1) Conditions that trigger soft start
(1) When power is applied in the automatic output mode, standby is canceled or normal reset from scaleover.
(2) When P (proportional band) is other than OFF on "2-1, 2-9 proportional band setting screen. "
(3) When soft start time setting on "4-50, 4-53 soft start time setting screen" is not OFF.
(2) Conditions that cancel soft start
(1) When soft start time has elapsed normally.
(2) When output values of soft start are higher than PID operation output values.
(3) When soft start time is changed to OFF.
(4) When switched to manual mode.
(5) When AT (auto tuning) is executed.
(6) When P (proportional band) is changed to OFF.
(7) When control output characteristics are changed.
(8) When in standby mode.

8－7．Change in position of decimal point

Position of decimal point can be changed for linear input，TC of decimal point and RTD range．
You should keep in mind that operation differs for TC and RTD range when using linear input．
（1）Change in position of decimal point for linear input
Sets position of decimal point to be displayed．
If changing position of decimal point from 0.0 to 0.000 ，input scaling changes from $0.0-100.0$ to $0.000-1.000$ ．
（2）Change in position of decimal point of TC／RTD range
Display of places below the decimal point can be switched to display or mask．
If changing position of decimal point from 0.0 to 0 ，the places below the decimal point are rounded off before being masked． If changing position of decimal point from 0 to 0.0 ，the places below the decimal point are displayed again．

Things requiring special attention
－Parameter values affected by range change（UNIT）also change similarly．
Example：If range is＂ 5 ＂（PV bias）

	［Position of decimal point： 0.0$] \rightarrow$ Change \rightarrow［Position of decimal point： 0$] \rightarrow$ Change again \rightarrow［Position of decimal point： 0.0$]$		
Measuring range lower limit value	0.0	0	0.0
Measuring range higher limit value	800.0	800	800.0
PV bias	20.5	21	21.0

＊As described above，after changing the position of the decimal point，the value may not revert to the original value when the position of the decimal point is changed back．
－When measurement range is changed，the position of the decimal point returns to the default position．
－If position of decimal point is 0 ，display accuracy is not guaranteed．

8－8．Specified screen call function

The specified screen call function is a function that allows you to quickly switch to the registered screen by registering the screen．
（1）How to register the specified screen
（1）Display the target screen．
（2）Press $\sqrt{\mathrm{Em}}+$ 四 to register the screen．（Up to 6 screens）
（3）The decimal point on the left digit of the PV display is displayed，and＂忥标＂is displayed on the SV digit for 1 second．
（4）Completion of registration．

Example：When E1 level value and E2 level value are registered．

E $: 16$	四＋＋－＋m	E． $18=1$	1 sec	E． 16	\square	E日G	［air＋國	E．E＇G	1 sec	Erion
－ 60		$5 E E T$		－200		4959		SEEE		－959

Note：
1．Screens of the program screen group cannot be registered．
2．Monitor screens cannot be added．
3．Up to 6 screens can be added．

（2）How to use the registration screen

（1）Display the basic screen．
（2）Press Am．
（3）The registered screen is displayed．
（4）By pressing Ω ，the registered next screen is displayed（up to 6 screens）．
（5）After completing the registration screen，press \varnothing to return to the basic screen．
Example：Screen transition when E1 level value and E2 level value are registered．

E80	nem	E． iHid	\square	E，F＇	\square	ET6
0		$\therefore 20808$		4595		\％

（3）Conditions for canceling the registration screen

1．Press E ENT + RNI while the registration screen is displayed．
2．The registered screen becomes a non－display condition．
For example，the event 1 level value screen registered above will be hidden if the event 1 type is set to＂NON＂，so the registration will be canceled at that point．

9. Causes and remedy of trouble and errors

9-1. Causes and remedy of trouble

Problem	Cause	Remedy
(1) Error message is displayed.	See "Causes and remedy of errors."	See "Error Codes, Causes and Remedies."
(2)Displayed measured value (PV) seems to be incorrect. (1) Set measuring range code is different from that of input sensor / input signal. (2) Erroneous wiring to input terminals of sensor.	(1) Check if set measuring range code is correct for input signal. (2) Cortect wiring to input terminals of sensor.	
(3) Front panel display goes off and does not function.	(1) Problem with power supply and/or wiring connection. (2) Something is wrong with the instrument.	(1) Inspect power supply / wiring connections and check wiring. (2) Inspect, repair or replace the instrument.
(4) Keys do not work.	(1) Key lock is in effect. (2) Communication is set to Com during communication.	(1) Cancel key lock. (2) Set communication to local (Loc). (3) Inspect, repair or replace the instrument.
(5) ON-OFF action of control output is too fast.	(1) ON-OFF "hysteresis range" is too narrow.	(1) Widen ON-OFF "hysteresis range."

9-2. Causes and remedy of errors

(1) Abnormal measured input

Screen display	Problem	Cause	Remedy
inititit (HHHH)	Higher limit scaleover	(1) Break in thermocouple input wiring. (2) Break in R.T.D. input A wiring. (3) Input measured value exceeded higher limit of measuring range by 10%.	(1) Check thermocouple input wiring for possible break. If there is nothing wrong with wiring, replace thermocouple. (2) Check R.T.D. input A terminal wiring for possible break. If there is nothing wrong with wiring, replace R.T.D. (3) For voltage or current input, check the measurement signal transmission unit. Check if set measuring range code is correct for input signal.
$\begin{aligned} & 1: 1: 1 \\ & (\text { LLLL }) \end{aligned}$	Lower limit scaleover	Input measured value fell below lower limit of measuring range by 10%.	Check for measurement input wiring for reverse polarity or possible break.
$\begin{aligned} & b--- \\ & (\mathrm{b}---) \end{aligned}$	Break in R.T.D. input wiring	(1) Break in B wiring (2) Multiple break in ABB wiring	Check R.T.D. input ABB terminal wiring for possible break. If there is nothing wrong with wiring, replace R.T.D.
E, inion (CJHH)	Higher limit scaleover of cold junction (CJ) of thermocouple input	Ambient temperature has exceeded $80^{\circ} \mathrm{C}$.	(1) Reduce ambient temperature to the level provided in the environment conditions for the product. (2) If ambient temperature has not exceeded $80^{\circ} \mathrm{C}$, examine the controller.
$\frac{5}{(C i t}$	Lower limit scaleover of cold junction (CJ) of thermocouple input	Ambient temperature has fallen below $-20^{\circ} \mathrm{C}$.	(1) Raise ambient temperature to the level provided in the environment conditions for the product. (2) If ambient temperature has not fallen below $-20^{\circ} \mathrm{C}$, examine the controller.

(2) Heater break/loop alarm errors

Screen display	Problem	Cause	Remedy
intioniti (HbHH)	Heater current sensor CT input value has exceeded 55.0A.	Excessive current	(1) Reduce the current. (2) Inspect the controller.
H6: (HbLL)	Something is wrong with the instrument.	Something is wrong with the instrument.	Inspect, repair or replace the instrument.

[^0]
10－1．Overview

Mask or key lock can be set for the various parameters．
The factory setting is＂all disp＂（display）．
There are however limits，so you should keep this point in mind．
＜Note＞
－PID－related parameter are managed by 1 set of PID No． 1 to No． 3.
Example）If output 1 proportional band is changed，output 1 proportional band is similarly changed for PID No． 1 to No． 3.
－Pattern－related parameters are managed by 1 set of pattern 1 to pattern 4 ．
Example）If the start SV value setting is changed，the start SV value is similarly changed for pattern 1 to pattern 4.
－Step－related parameters are managed by 1 set of all steps．
Example）If the step SV value setting is changed，all steps of step SV value are similarly changed for pattern 1 to pattern 4.
－The settings cannot be changed for the various monitor screen of the user setting screen group．Always displayed．
－The settings cannot be changed for the EXE／STBY（RUN／RST）switching screen of the user setting screen group．
Always displayed．
－The＂dp＂in the far right digit of the SV display lights when ordinary parameter settings screen is displayed for locked parameters．
－If turned from OFF to ON on the M0－1 screen，the mask／lock setting of all parameters is reset to＂disp＂（display）．
Please note that the function of each parameter is still valid even in masked／locked state by mask／lock function and can be operated by communication or DI．

10－2．Parameter diagram

The overview of the parameter mask／lock diagram is as follows．The windows of the various screens are divided as follows． The number at the top of the window is the screen No．
To switch to the mask／lock setting mode，press and hold Δ on the＂4－0 INIT screen＂for at least 2 seconds when on standby（reset）．

※ In the＂M0－2 Basic screen SV value＂，parameter can be set oFF／Lock only．
明：key－lock disabled
もーローが：key－lock enabled
Note：M0－2 screen display can be set in the＂4－63 Basic display mode＂

M0－0 Mask lock basic screen			
2 seconds	M4 screen group		
M4－0 \downarrow			
	$M 4-18 \quad \square \mid \triangle \sqrt{\mathrm{hN}}$		M4-52
Key lock setting	H6 6 i Heater 1 alarm mode setting		$8=\frac{0}{5}$ Output 2 characteristics
	M4－19 9 6 Heater 1 break alarm setting	M4－36 $5-5 \theta$ Communication start character setting	M4－53 P
			Sort out 2 soft start time
	M4－21 and abs Heater 2 alarm mode setting	M4－38 Communcation speed $6,55 \%$ setting	
－5	M4－22	M4－39 O－ma	
ET EV1 standby action	50 Heater 2 break alarm	dE：Communication delay	Nas Number of program
M4－6 Q Am	M4－23－${ }^{\text {a man }}$	M4－40	M4－57 $\square^{\text {a }}$－［m］
E $\frac{1}{5}$ EV1 latching setting	$6,-6 i$ Heater 2 loop alarm setting	CS Communication s－50 memory mode setting	$t=\frac{6 n}{5 \rho} \quad$ Program time unit
			M4－58 \square $B-b$ $P V$ $-G i a s ~ v a l u e ~ s e t t i n g ~$
M4－8	$M 4-25$ Analog output scaling $80-5$, lower limit value setting		
$M 4-10$ EV standby action setting			M4－61 $\square \downarrow$ Re $-A n E$ Measuring Range Codes setting
		$\begin{array}{ll} \text { M4-45 } & \text { an } \\ \hline 5 \% & \text { communcation master mode } \\ \text { start slave address setting } \end{array}$	
		$\begin{array}{lll} M 4-46 & Q \end{array}$	
M4－13	M4－30 D	M4－47 an dis 58 communication master mode write data address setting	
	M4-31	M4－48 O 0,5 Output 1 proportional cycling time setting	
	M4－32		
	M4－34		
4－18 screen			

10－3．Mask／lock setting contents

（1）Settings for various parameters

Bーローロー・ Displays parameter setting screen but keys are locked The＂dp＂on the far right of the SV display lights to indicate key lock．

（2）Settings for each screen group

 Setting contents for the various parameters are applied．

（3）Mask／lock initialization
If turned from OFF to ON on the M0－1 all parameters reset screen，mask／lock is reset for all parameter and becomes， 5 ，

11．Parameter setting record

For the sake of convenience，you should record your settings and selections．
Initial values for code $05(\mathrm{~K})$ are given here

Screen No．	Parameter（item）／screen		Initial value	Setting／selection	Record
0－0	Basic screen（SV）	0.0 （	C0，		
0－1	Standby action（FIX） Reset action（program）	$\begin{array}{ll} \operatorname{EXE} & (5) \\ \operatorname{RST} & (56) \end{array}$	ESE		
0－2	Output 1 monitoring	－	$\underline{\sim}$		
0－3	Output 2 monitoring	－	－		
0－4	Execution step No．monitoring	－	－		
0－5	Remaining time of step monitoring	，	－		
0－6	Number of pattern executions monitoring		T		
0－7	PID execution monitoring				
0－8	Hold	HLd（ -10 O	AFF		
0－9	Advance	AdV（ $\%$－it）	aFF		
0－10	Monitoring heater current 1	HC＿1（ \boldsymbol{H}_{0}^{-1}－${ }^{\text {a }}$ ）	\cdots		
0－11	Monitoring heater current 2		，		
0－12	Event 1 setting value setting	E1Hd（E） ifig	5080.08		
0－13	Event 2 setting value setting		＋ 99.9		
0－14	Event 3 setting value setting		F\％${ }^{0}$		
0－15	AT action	At（Fit）	aFF		
1－0	FIX initial screen	FiX（\％，\％）	SEt		
1－1	FIX ON／OFF	FiX（ F_{5}^{-5}	019		
1－2	SV No．		1		
1－3	SV1 setting		Coin		
1－4	SV2 setting	SV2（5日6）			
1－5	SV3 setting	SV3（56is）	0		
PID No． 1					
2－0	Initial screen	$\operatorname{Pid1}\left(\boldsymbol{F}_{6}-\boldsymbol{i}\right.$ ）	5Et		
2－1	OUT1 PID P	1＿P1（ \boldsymbol{i}	7.7		
2－2	OUT1 hysteresis	1dF1（ GFif）	E． 0		
2－3	OUT1 PID I		68		
2－4	OUT1 PID D	1＿d1（	36		
2－5	OUT1 manual reset	$1 \mathrm{mr1}$（	6.6		
2－6	OUT1 PID target value function	1 SF 1 （ 5 \％）	Cot		
2－7	OUT1 lower limit limiter	10L1（iot i）	70．0		
2－8	OUT1 higher limit limiter				
2－9	OUT2 PID P	2＿P1（ \mathbf{F}^{\prime}－ \boldsymbol{F} ）	3.7		
2－10	OUT2 hysteresis		E10		
2－11	OUT2 PID I		OEC		
2－12	OUT2 PID D		36		
2－13	OUT2 dead band	2db1（\％6i）	76		
2－14	OUT2 PID target value function		Co． 0		
2－15	OUT2 lower limit limiter		70．0		
2－16	OUT2 higher limit limiter		1080.0		
PID No． 2					
2－0	Initial screen	$\operatorname{Pid} 2(\vec{\square}$	$5 E t$		
2－1	OUT1 PID P		7.7		
2－2	OUT1 hysteresis	1dF2（	E17		
2－3	OUT1 PID I	1＿i2（	CO_{6}		
2－4	OUT1 PID D	1＿d2（	37		
2－5	OUT1 manual reset	$1 \mathrm{mr} 2(\mathbb{O}$	\％		
2－6	OUT1 PID target value function	$1 \mathrm{SF} 2(55 \%)$	Cotic		
2－7	OUT1 lower limit limiter	10L2（或に）	Cion		
2－8	OUT1 higher limit limiter	10H2（			
2－9	OUT2 PID P		37.10		
2－10	OUT2 hysteresis	2dF2（ 0 －	E10		
2－11	OUT2 PID I		O80		
2－12	OUT2 PID D	2＿d2（\％－80）	37		
2－13	OUT2 dead band	2db2（\％日家）	5		
2－14	OUT2 PID target value function				
2－15	OUT2 lower limit limiter	2oL2（	Cin		
2－16	OUT2 higher limit limiter	20H2（\％ロ日安）	180.0		
PID No． 3					
2－0	Initial screen		5Et		
2－1	OUT1 PID P		3.6		
2－2	OUT1 hysteresis	1dF3（	E10		
2－3	OUT1 PID I		COC		
2－4	OUT1 PID D	1＿d3（	37		
2－5	OUT1 manual reset		76		
2－6	OUT1 PID target value function	1 SF 3 （ 5 \％\％）			
2－7	OUT1 lower limit limiter	10L3（160う）	Cin		
2－8	OUT1 higher limit limiter		9080.0		

Screen No．	Parameter（item）／screen		Initial value	Setting／selection	Record
2－9	OUT2 PID P	2＿P3（\％）Fiol	37.7		
2－10	OUT2 hysteresis	2dF3（\％\％）	Ein		
2－11	OUT2 PID I	2＿i3（\％－5）	，\％ 0		
2－12	OUT2 PID D	2＿d3（\％－日i	36		
2－13	OUT2 dead band	2db3（\％）	［1．20		
2－14	OUT2 PID target value function	2SF3（\％）゙ご）	C0\％		
2－15	OUT2 lower limit limiter	20L3（Eが	0.6		
2－16	OUT2 higher limit limiter	20H3（\％airis）			
4－0	Initial screen		SEt		
4－1	Key lock setting	LocK（2のにが）	GFF		
4－2	Event at STBY setting	$\operatorname{StEV}(56$ Ei）	GFF		
4－3	Event 1 type	E1＿m（E）	ifici		
4－4	Event 1 hysteresis		\cdots		
4－5	Event 1 standby action		GFF		
4－6	Event 1 latching	E1＿L（\％ít）	GF\％		
4－7	Event 1 output characteristics		90		
4－8	Event 2 type		1：		
4－9	Event 2 hysteresis	E 2 d （			
4－10	Event 2 standby action		AFF		
4－11	Event 2 latching	E1＿L（ \％亿	AF		
4－12	Event 2 output characteristics	E1＿A（E®， \boldsymbol{B} ）	96		
4－13	Event 3 type		96000		
4－14	Event 3 hysteresis		Fin		
4－15	Event 3 standby action	E3－1（ 5 －	GFF		
4－16	Event 3 latching	E3＿L（ \％in	GF\％		
4－17	Event 3 output characteristics	E3＿A $\boldsymbol{E} \boldsymbol{\square}$	96		
4－18	HB1 break／loop alarm mode		ant i		
4－19	HB1 break alarm setting		GFF		
4－20	HB1 loop alarm setting	C1HL（\％intio	GFF		
4－21	HB2 break／loop alarm mode		Gut i		
4－22	HB2 break alarm setting	C 2 Hb （\％゙が或）	aft		
4－23	HB2 loop alarm setting	C 2 HL （ E － HO	AFF		
4－24	Analog output type	Ao＿m（	$F \mathrm{Fi}$		
4－25	Analog output scaling lower limit		\％i．in		
4－26	Analog output scaling higher limit		8060		
4－27	Analog output limiter lower limit		0.0		
4－28	Analog output limiter higher limit		100000		
4－29	DIl mode	D1＿m（6ía $\overline{\mathbf{1}}$ ）	9600		
4－30	DI2 mode		9609		
4－31	DI3 mode		の日里		
4－32	DI4 mode		9600		
4－33	Communication mode setting		L日に		
4－34	Communication address		i		
4－35	Communication data format		751		
4－36	Start character		56%		
4－37	BCC operation／protocol type		Frisi		
4－38	Communication speed		9608		
4－39	Communication delay time	dely（ 6 O！	\therefore		
4－40	Communication memory mode	mem（	EEF		
4－41	Communication mode types	Comk（	E日is		
4－42	Communication master mode	mS＿m（\％9，$\overline{\mathbf{1}}$ ）	56		
4－43	Communication master control output scaling lower limit value	m＿SL（\％．56）	8		
4－44	Communication master control output scaling higher limit value	m＿SH（\％，5i－i）	80808		
4－45	Start slave address	S＿Ad（E，Fiai）	i		
4－46	End slave address		i		
4－47	Write－in data address		0300		
4－48	Output 1 proportional cycling time		$\mathrm{Y}: \mathbf{7} \boldsymbol{7}$		
4－49	Output 1 output characteristics		－F		
4－50	Output 1 soft start time	SoF1（50\％\％	GF\％		
4－51	Output 2 proportional cycling time				
4－52	Output 2 output characteristics		87		
4－53	Output 2 soft start time	SoF2（50Fに）	6%		
4－54	SV limiter lower limit value	SV＿L（5日，in）			
4－55	SV limiter higher limit value	SV＿H（56，	860808		
4－56	Number of patterns setting	$\operatorname{Ptnc}(\boldsymbol{F}$	4		
4－57	Time unit	t＿Un（t－Lior	－i，		
4－58	PV bias value	PV＿b（F－6，宜）	0.0		
4－59	PV gain compensation	PV＿G（ 0 －	C0， 0		
4－60	PV filter time	PV＿F（FG日F）	I		
4－61	Measuring range code		$\begin{gathered} \text { Multi: } \\ \text { V: } \\ \hline 10 \end{gathered}$		
4－62	Input temperature unit		E		
4－63	Input scaling lower limit	Sc L（ $510-2$ ）	\％17		
4－64	Input scaling higher limit		Etide		
4－65	Input scaling decimal point position	dP （ $\mathrm{c}^{\left(1 F^{-1}\right.}$	？		
4－66	Basic screen display mode	dSP（ ¢\％）			
4－67	Hysteresis mode		EEnt		
4－68	Parameter Initialization	$\operatorname{Pini}\left(F-\square_{0}\right.$	CFF		

－Display
－Digital display
－Display accuracy
Measured value（PV）／7－segments red LED， 4 digits Target set value（SV）／7－segments green LED， 4 digits $\pm(0.25 \% \mathrm{FS}+1$ digit $)$
Does not include cold junction temperature compensation tolerance of thermocouple input．For details on accuracy， see＂ 7 ．Measuring Range Codes．＂
－Range for maintaining ： $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(18 \sim 28^{\circ} \mathrm{C}\right)$
display accuracy
－Display resolution ：Differs according to measuring range（ $0.001,0.01,0.1,1$ ）
－Measured value ：$-10 \% \sim 110 \%$ of measuring range
display range $\mathrm{Pt}-200 \sim 600^{\circ} \mathrm{C}$ range is $-240 \sim 680^{\circ} \mathrm{C}$ ．
$\mathrm{JPt}-200 \sim 500^{\circ} \mathrm{C}$ range is $-240 \sim 570^{\circ} \mathrm{C}$ ．
－Display update cycle ： 0.25 seconds
－Action display／color
： 9 types，LED lamp display
Control output（OUT1，OUT2）／Green
Event（EV1，EV2，EV3）／Orange
Auto tuning（AT）／Green
Manual control output（MAN）／Green
Action display（RUN）／Green
Communication（COM）／Green
－Setting
－Setting method
－Target value setting range
－Setting limiter
－Key lock

By operating 5 front panel keys $(\Omega, \boldsymbol{\nabla}, \boldsymbol{\Delta}$, ， Em, ，RN $)$
Same as measuring range（except within setting limiter）
：high／low individually set，optional within measuring range
（lower limit value less than higher limit value）
：No lock，3－stage setting

■Input
－Type of input
－Thermocouple

Input resistance

 External resistance toleranceBurnout function
Cold junction
compensation accuracy
－R．T．D．
Amperage
Lead wire tolerable resistance

Input resistance
－Input scaling function
Scaling range
Span
Position of decimal point
－Sampling cycle
－PV bias
－PV filter
－PV gain
－Isolation
－Voltage mV ：$-10 \sim 10,0 \sim 10,0 \sim 20,0 \sim 50,10 \sim 50,0 \sim 100 \mathrm{mV}$ DC
$:-1 \sim 1,0 \sim 1,0 \sim 2,0 \sim 5,1 \sim 5,0 \sim 10 \mathrm{~V}$ DC
：Min． $500 \mathrm{k} \Omega$
Current input（ $0 \sim 20,4 \sim 20 \mathrm{mADC}$ ）handled by external receiving impedance（ 250Ω ，sold separately）
：Universal（TC，Pt，mV）or voltage（V）
：B，R，S，K，E，J，T，N，PLII，C（WRe5－26），
$\{\mathrm{U}, \mathrm{L}(\mathrm{DIN} 43710)\}$ ，Metal－chromel（AuFe－Cr）
：Min． $500 \mathrm{k} \Omega$
Max． 100Ω
：Standard feature（up scale）
$: \pm 2^{\circ} \mathrm{C}$（ambient temperature within $5 \sim 45^{\circ} \mathrm{C}$ ）
$\pm 3^{\circ} \mathrm{C}$ when closely－mounted is series
：Pt100／JPt100 3－wire type
： 0.25 mA
：Max． 5Ω per wire（resistance for all wires must be equal）
：$-10 \sim 10,0 \sim 10,0 \sim 20,0 \sim 50,10 \sim 50,0 \sim 100 \mathrm{mV}$ DC

Scaling during voltage（ mV, V ）possible
：－1999～9999 digit
：10～10，000 digit
：None，1，2， 3 digits below decimal point
： 0.25 seconds
：－1999～2000 digit
： $0 \sim 9999$ seconds
$:-5.00 \sim+5.00 \%$ ，gain compensation possible
：Not isolated during input and system DI／CT input． Isolated for others．

■ Control
－Control mode
With 1 output
With 2 output
：Expert PID control with auto tuning function
：Expert PID control with auto tuning function PID（output1）＋PID（output2）
－Type of control ：Contact／1a 240 V AC 2 A （resistive load） 1.2 A （inductive load） type／rating
（both output 1／2）
Control output resolution
Control output accuracy

SSR drive voltage／ $12 \mathrm{~V} \pm 1.5 \mathrm{~V}$ DC（max．load current 30 mA ） Current／4～20 mA DC（max．load resistance 600Ω ） Voltage／0～10V DC（max．load current 2 mA ） ：Control output 1：Approx．0．008\％（1／13000）
Control output 2：Approx．0．008\％（1／13000）
：Control output 1：$\pm 1.0 \%$ FS（ $5 \sim 100 \%$ output）
Control output $2: \pm 2.0 \%$ FS（ $5 \sim 100 \%$ output）
－Control output 1
Proportional band（P）：OFF，0．1～999．9\％（ON－OFF action by OFF）
Integral time（I）：OFF，1～6000 seconds（P or PD action by OFF）
Derivative time（D）：OFF， $1 \sim 3600$ seconds（P or PI action by OFF）
Target value function ：OFF， $0.01 \sim 1.00$
Hysteresis mode ：Select from the following 3 types
CENT mode，SVOF mode，or SVON mode
ON－OFF hysteresis
Manual reset
Higher／lower limit ：Lower limit 0．0～99．9\％，higher limit 0．1～100．0\％ output limiter（Lower limit value less than higher limit value）
Proportional cycle ： $1 \sim 120$ seconds（contact or SSR drive voltage output）
－Control output 2 （option）
Proportional band（P）：OFF，0．1～999．9\％（ON－OFF action by OFF）
Integral time（I）：OFF， $1 \sim 6000$ seconds（ P or PD action by OFF）
Derivative time（D）：OFF，1～3600 seconds（P or PI action by OFF）
Target value function ：OFF， $0.01 \sim 1.00$
Hysteresis mode ：Select from the following 3 types
CENT mode，SVOF mode，or SVON mode
ON－OFF hysteresis ： $1 \sim 999$ digit（enabled when $\mathrm{P}=\mathrm{OFF}$ ）
Dead band ：－1999～5000（digit）
Higher／lower limit ：Lower limit 0．0～99．9\％，higher limit 0．1～100．0\％
output limiter（Lower limit value less than higher limit value）
Proportional cycle $: 1 \sim 120$ seconds（contact or SSR drive voltage output）
－Manual control
Output setting range ： $0.0 \sim 100.0 \%$
Setting resolution $: 0.1 \%$
Manual－auto switching ：Balanceless bumpless
－Soft start ：Set separately for output 1 and output 2；OFF， $1 \sim 120$ seconds
－AT point $:$ SV value in execution
－Control output ：RA（reverse characteristics）／DA（direct characteristics）， characteristics front panel keys，switch by communication

Set separately for output 1 and output 2
RA（reverse characteristics）：Heating
DA（direct characteristics）：Cooling
－Isolation ：Contact output：Isolation for all
Not isolated for SSR drive voltage，current，voltage and during analog output．Isolated for other（however 1－way output not isolated during 2－way output for SSR drive voltage，voltage，current and voltage output）

Event output（option，max． 3 point）
－Number of output points ： 3 points：EV1，EV2 and EV3
No exclusive selection for EV1 and EV2
Exclusive selection of EV3 for control output 2 and DI4
－Types of event ：Select from among the following 21 types for EV1，EV2 and EV3：

に日に	No selection	$\therefore F$	Lower limit absolute value
Hig	Higher limit deviation	50	Scaleover
ist	Lower limit deviation	$E 6$	EXE signal
58	Outside higher／lower limit deviation	－家：	Output 1 inverted output
－81	Inside higher／lower limit deviation	His	Heater 1 break／loop
HFif	Higher limit absolute value	HE\％	Heater 2 break／loop
following 9 types are valid for program mode only：			
－4r	RUN signal	MEis	Hold signal
EtFs	Step signal	Frer	Program signal
Fたの	Pattern signal	M 50	Up slope signal
Erats	Program end signal	8． 51	Down slope signal
	Guarantee soak		

－Event setting range ：Absolute value（both higher／lower limit），within measuring range
Deviation（both higher／lower limit），－1999～2000 digit
Event action Higher／lower limit deviation（inside／outside），0～2000 digit
－Hysteresis ON－OFF action
－Standby action
1～999 digit
：Selected from among the following 4 types
No standby
Standby 1 Standby when power is applied and when STBY （RST）switches to EXE（RUN）．
Standby 2 Standby when power is applied and when STBY （RST）switches to EXE（RUN）and standby when executed $S V$ value changes．
No standby control action No alarm output for abnormal input
－Output type／rating $\quad:$ Contact（EV1／EV2， $1 \mathrm{a} \times 2$ points common，EV3 1a independent） ／240V AC，2A（resistive load）
－Output updating cycle ： 0.25 seconds
－Latching function ：ON／OFF selection
－Output characteristics ： $\mathrm{NO} / \mathrm{NC}$ selection
－Isolation ：Isolation for all
－Programming function（option）
－Number of patterns ：Max． 4 （can be set to 1,2 or 4 ）
－Number of steps ：Max． 8 （4 patterns）， 16 （2 patterns）
32 （1 pattern），total number of steps $=32$
－Number of PID types
－Time setting
－Setting resolution
－Time accuracy Max． 3
$: 0$ minutes， 0 seconds ~ 99 minutes， 59 seconds per step
Or 0 hours， 0 minutes ~ 99 hours， 59 minutes per step
： 1 minute or 1 second

Numbatern for each step ：SV，step time，PID No．
Number of pattern ：Max． 9999
executions
－PV start
－Hold
－Advance
－Power failure compensation
－Guarantee soak zon
：ON／OFF
：Front panel key input，external control input or communication
：Front panel key input，external control input or communication
：None（Setting contents are maintained and elapsed
time，execution step and number of executions are reset．）
：OFF， $1 \sim 999$ digit
：OFF，1～999 digit

External control input/DI (option)	
	Exclusive selection with 3 points CT input (DI1, DI2, DI3)
	Exclusive selection with 1 point (DI4), control output 2 and event output (EV3)
SRS12A/SRS13A/SRS14A : Max. 4 points	
Exclusive selection with 3 points (DI1, DI2, DI3)	
Exclusive selection with 1 point (DI4), control output 2 and event output (EV3)	
- Type of DI allocation	: Selected for each DI from among the following 14 types: No allocation, EXE1 (RUN1), EXE2 (RUN2), MAN, AT, ESV2, ACT1, ACT2, PROG, HLD, ADV, PTN2, PTN3, L_RS
- Action input	: Non-voltage contact or open collector (Level action) approx. 5 V DC, 1 mA or
Minimum level	: 0.25 seconds
holding time	
- Isolation	: Isolated except during DI, input, system, CT input
- CT input (option) (for heater break / loop alarm)	
	2-point detection; exclusive selection with DI1, DI2 and DI3 for SRS11A
	No exclusive selection for SRS12A, SRS13A and SRS14A
- Types of current detection target	: Allocation for OUT1 and OUT2 is possible. However, this can be selected only when output type is contact or SSR drive voltage.
- Current detection method	: By CT sensor (sold separately)
Current capacity	$: 30 \mathrm{~A} / 50 \mathrm{~A}$ (CT sensor sold separately)
- Current setting range: OFF, $0.1 \sim 50.0 \mathrm{~A}$ (alarm action off when set to OFF)	
- Current display range : $0.0 \sim 55.0 \mathrm{~A}$	
- Display accuracy	$: \pm 2.0$ A (for sine wave 50 Hz)
- Alarm action	: Heater break detection when control output ON:
	Heater loop alarm detection when control output OFF:
- Alarm output	: Output for event by event assignment
- Minimum time for action confirmation	: 0.25 seconds for both ON and OFF (each 0.5 second)
- Alarm maintain mode	: Latching function ON/OFF
Standby action	: Selection of no (oFF) or yes (1)
	Standby when power applied only
- Sampling cycle	: 125 msec
- Isolation	: Isolated except during CT input, input, system and DI
- Communication function (option)	
	Exclusive selection with analog output for SRS11A
Type of communication : EIA standard RS-485	
- Communication system : 2-line half duplex start-stop synchronization system - Communication speed : 1200, 2400, 4800, 9600, 19200, 38400 bps - Data format : Select from among 7E1, 7E2, 7N1, 7N2, 8E1, 8E2, 8N1, 8N2	
- Communication delay time	: 1~100 (x 0.512 msec)
- Max. number of connections	: 32 including host
- Communication address	: 1~255
- Communication code	: ASCII, MODBUS RTU binary code only
- Communication Protocol	: Shimaden standard protocol / MODBUS ASCII, RTU
- Other	: Start character and BCC operating method can be selected.
- Communication memory mode	: Select from among EEP, RAM and E_R
- Communication mode types	: Select between COM1 and COM2
- Communication master mode	: Can be used as master device when using multiple digit communication
Master control output scaling lower limit	: -1999~9989 (digit)
Master control output scaling higher limi	: lower limit+10~9999 (digit)
Start slave address setting	: Broadcast, 1~255
End slave address setting	: Start address \sim start address +30
Write-in data address setting	: 0000H~FFFFH
- Communication distance	: Max. 500 m (differs according to conditions)

- Analog output (option)
- Number of
output points
- Types of output
- Types of output
(execution SV), control output 1 and control output 2 .
- Output signal/rating : 4~20 mA DC (max. load resistance 300Ω)
$0 \sim 10 \mathrm{~V}$ DC (max. load current 2 mA)
$0 \sim 10 \mathrm{mV}$ DC (output resistance 10Ω)
- Output scaling $\quad:$ Within measuring range or output range Inversed scaling possible
- Output limiter $\quad:$ Lower limit $0.0 \sim 99.9 \%$, higher limit $0.1 \sim 100.0 \%$ (Lower limit value less than higher limit value)
- Output accuracy $: \pm 0.3 \% \mathrm{FS}$ (for display value)
- Output resolution : Approx. 0.01\% (1/10000)
- Output updating cycle : 0.25 seconds
- Isolation
: No isolation with control output P, I and V

■ General specifications
Data storage : Non-volatile memory (EEPROM)

- Ambient conditions for operations

Temperature	$:-10 \sim 50^{\circ} \mathrm{C}$
Humidity	$:$ Max. $90 \% \mathrm{RH}$ (no dew condensation)
Elevation	: Max. 2000 m above sea level
Overvoltage Category	$:$ II
Pollution class	$: 2$ (IEC60664)

- Storage temperature : $-20 \sim 65^{\circ} \mathrm{C}$
- Supply voltage $: 100 \sim 240 \mathrm{~V}$ AC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \pm 10 \%$ (Available only for SRS11A)
- Power consumption : SRS11A Max. 11VA for 100~240V AC 4 W for 24 V DC, 6 VA for 24 V AC SRS12A/13A/14A Max. 14VA for 100~240V AC
- Input/noise removal ratio
- Insulation resistance : Between input/output terminals and power terminal Min. 500 V DC, $20 \mathrm{M} \Omega$
- Dielectric strength : Between input/output terminals and power terminal 3300 V AC, 1 minute
Between input and Youtput, 2300 V AC, 1 minute Between input and $\mathrm{P} \cdot \mathrm{I} \cdot \mathrm{V}$ output, 500 V AC, 1 minute
- Applicable standards

Safety : IEC61010-1 and EN61010-1 EN IEC 61010-2-030
EMC : EN61326-1
Construction (IP-rating)

Only SRS12A conforms to IP66 Dust-proof and Drip-proo front panel (Panel thickness :1.2-3.2mm)

- Material of case : PC resin molding (equivalent of UL94V-0)
- External dimension

SRS11A : H48 \times W48 \times D66 mm (in panel 62 mm)
SRS12A : H72×W72×D69 mm (in panel 65 mm)
SRS13A : H96 \times W96 \times D69 mm (in panel 65 mm)
SRS14A : H96 \times W $48 \times$ D66 mm (in panel 62 mm)

- Mounting : Push-in panel (one-touch mount)
- Panel thickness $\quad: 1.0 \sim 3.5 \mathrm{~mm}$
- Panel cutout

SRS11A: H45 \times W45 mm
SRS12A: H68×W68 mm
SRS13A : H92×W92 mm
SRS14A : H92×W45 mm

- Weight

SRS11A : Approx. 120 g
SRS12A : Approx. 190 g
SRS13A : Approx. 220 g
SRS14A : Approx. 160 g

The contents of this manual are subject to change without notice

Temperature and Humidity Control Specialists

[^0]: When the controller does not operate as intended and you suspect it may be broken, read the instruction manual and inspect once again. If there is something wrong with the controller or there is something you do not understand, contact your nearest Shimaden dealer.

