SRS0 Series
 (SRS1/SRS3/SRS4/SRS5)
 Digital Controller Instruction Manual (Detailed Version)

Thank you for purchasing a Shimaden product. After making sure the product fits the desired description, you should carefully read the instruction manual and get a good understanding of the contents before attempting to operate the device.

Request

The instruction manual should be kept in a handy place where the end user can refer to it when necessary.

Preface

This instruction manual (detailed version) was written for those who perform wiring, installation, operation, and routine maintenance for the SRS0 (SRS1/SRS3/SRS4/SRS5) Series.
This manual contains a description of the operating method, functions, wiring, mounting method, and precautions when handling the SRS0 (SRS1/SRS3/SRS4/SRS5) Series (hereinafter referred to as the SRS0 Series unless a separate description is required). You should, therefore, keep it handy to refer to it when operating and handling the device. Be sure to observe all precautions and adhere to the procedures provided herein.

Contents

Request 1
Preface 1

1. Safety rules 3
2. Introduction 4
2-1. Preliminary check 4
(1) Model code check 4
(2) Accessories check 4
2-2. Notes on use 4
3. Installation and wiring 4
3-1. Installation site (environmental conditions) 4
3-2. Mounting 4
3-3. External dimensions and panel cutout 5
3-4. Wiring 6
3-5. Terminal layout 6
3-6. Terminal arrangement table 6
3-7. Operation preparations 7
4. Names and functions of parts on front panel.. 8
5. Parameter diagram and setting 9
5-1. Parameter diagram 9
$5-2$. Display when power is applied 10
5-3. Switching screens 10
(1) Switching screens within screen group 0 10
(2) Switching between screen group 0 and screen group 1 10
(3) Switching screens within screen group 1 10
(4) Switching to screen group 2 10
(5) Switching screens within screen group 2 11
(6) Switching to screen group 3 11
(7) Switching screens within screen group 3 11
(8) Switching to screen group 4 11
(9) Switching screens within screen group 4 11
(10) Switching to screen group 5 11
(11) Switching screens within screen group 5 11
(12) Set data modification. 12
$5-4$. Auto return function 12
$5-5$. Screen group 0 setting 12
(1) Setting target set values (SV) 12
(2) Manual setting of control output 12
(3) Auto tuning (AT) 13
(4) Reset (RST)/run (RUN) 13
(5) Event setting 14
(6) Multi SV (target set values) 14
6. Screen explanation and setting items 15
7. Measuring range codes 21
8. Explanation of functions 22
8 -1. Events 22
(1) Alarm action 22
(2) Event standby action selection 22
(3) Event selection alarm action diagrams 22
(4) Control output inverted output 23
(5) Event status output action 23
8-2. P.I.D 23
(1) P (proportional action) 23
(2) I (integral time) 23
(3) D (derivative time) 23
(4) MR (manual reset). 23
(5) SF (target value function) 23
8 -3. Control output 24
(1) Lower limit and higher limit limiter setting 24
(2) Proportional cycle 24
(3) Control output characteristics 24
(4) Two-position action 24
8-4. External control input (DI). 25
(1) Controller action execution (RUN1) 25
(2) Controller action execution (RUN2) 25
(3) Manual output (MAN) 25
(4) Auto tuning execution (AT) 25
(5) SV selection (SV) 25
(6) Output characteristic (ACT) 25
(7) Program (PROG) 25
(8) Hold signal (HLD) 25
(9) Advance (ADV) 25
(10) Total unlatching (L_RS) 25
$8-5$. Change in position of decimal point 26
(1) Change in position of decimal point for linear input 26
(2) Change in position of decimal point of TC/RTD range 26
8-6. Start SV 26
(1) When start SV function is invalid 26
(2) When start SV function is valid 26
(3) When start SV function is valid and start step is skipped 26
8-7. Guarantee soak (GUA) 27
(1) When OFF 27
(2) When guarantee soak zone is set 27
9. Causes and remedy of trouble and errors 28
9-1. Causes and remedy of trouble 28
9-2. Causes and remedy of errors 28
(1) Abnormal measured input 28
10. Parameter setting record 29
11. Specifications 31

Safety rules, precautions concerning equipment damage, additional instructions and notes are written based on the following headings.
4 WARNING: Matters that could result in injury or death if instructions are not followed.
I CAUTION: Matters that could result in equipment damage if instructions are not followed.
Note: Additional instructions or notes.

\triangle WARNING

> The SRSO Series digital controllers are control instruments designed for industrial use to control temperature, humidity and other physical values.
> You should either take appropriate safety measures or avoid using for control that could have a serious effect on human life.
> The manufacturer shall not be liable for an accident that results if used without taking appropriate safety measures.
> - The digital controller should be used so the terminal elements in the control box, etc., are not touched by humans.
> - Do not remove the controller from its case, or insert your fingers or electric conductors inside the case.
> Doing so could result in electric shock accident involving death or serious injury.
> - Be sure to turn off power while performing wiring. Failure to do so could result in electric shock.
> - After wiring, do not touch terminal elements or other charged parts while they are conducting electricity. Failure to do so could result in electric shock.

\triangle CAUTION

If there is danger of damage to any peripheral device or equipment due to failure of the controller, you should take appropriate safety measures such as mounting a fuse or overheating prevention device. The manufacturer shall not be liable for an accident that results if used without taking appropriate safety measures.

- Controller labels and alert mark $₫$

Alert marks $\widehat{\Lambda}$ are printed on the terminal label of the case. You could be shocked if you touch charged parts. The alert marks are provided to call your attention to this.

- Provide a switch or breaker as a means of cutting off power for external power circuit connected to the power terminal of the controller. Mount a switch or breaker near the controller where the operator can get to it easily and label it as an electrical breaker for the controller. Use a switch or breaker that conforms to requirements of IEC60947.
- Fuses

The controller does not have a built-in fuse. Be sure to mount a fuse on the power circuit connected to the power terminal.
Provide a fuse between the switch or breaker and the controller. Mount on the L side of the power terminal. Fuse rating/characteristics: 250 V AC, $0.5 \mathrm{~A} /$ medium time-lagged type or time-lagged type Use a fuse that conforms to requirements of IEC60127.

- Voltage/current of load connected to the output terminal and EV terminal should be within the rating. Using voltage/current that exceeds the rating could shorten the life of the controller by raising the temperature, and could result in equipment failure. For rating, see "11. Specifications."
Connect equipment that conforms to requirements for IEC61010 to the output terminal.
- Do not apply voltage/current other than rated input to the input terminal. Doing so could shorten product life and lead to equipment failure. For rating, see "11. Specifications."
If the input is voltage or current, connect equipment that conforms to IEC61010 to the input terminal.
There are draft holes in the controller for heat to escape from. Do not allow foreign matter such as metal to get into the holes. Doing so could result in equipment failure or fire.
- Do not allow the draft holes to become clogged with dust, etc.

Doing so could shorten the life of the product due to temperature rise or insulation deterioration, and could result in equipment failure or fire. For space between instruments, see "3-3. External dimensions and panel cutout."

- Repeating endurance tests such as dielectric strength, noise resistance and surge resistance could negatively affect the controller.
- The user should absolutely not modify or use the controller other than the way it was intended.
- It takes 30 minutes to display the correct temperature after applying power to the digital controller. (Therefore, turn the power on more than 30 minutes prior to the operation.)
- To ensure safety and maintain the functions of this device, do not disassemble this device. If this device must be disassembled for replacement or repair, contact your dealer.

2. Introduction

2-1. Preliminary check

The controller has undergone sufficient quality control inspections, but you should check the specification code/appearance and make sure you have all the accessories to make sure nothing is missing or damaged. Compare the specification code on the case with the following to make sure it is the product you ordered.
(1) Model code check

(2) Accessories check

Instruction manual (A3 size paper $\times 2$): 1 copy
Note: In the event you want to inquire about a product defect, missing accessory or other matter, please contact your nearest Shimaden agent.

2-2. Notes on use

Do not press front panel keys with a hard or pointed object. Press lightly with your fingertips.
To clean, wipe lightly with a dry cloth. Do not use solvents such as thinner.

3. Installation and wiring

3-1. Installation site (environmental conditions)

Environmental conditions for operations

The controller is designed to be used under the following conditions. Observe the following environmental conditions when using:

1) Must be used indoors
2) Max. elevation: 2000 m
3) Ambient temperature: $-10-50^{\circ} \mathrm{C}$
4) Ambient humidity: Max. 90% RH, no dew condensation
5) Transient over voltage category: Il
6) Pollution class: 2 (IEC 60664)

\triangle CAUTION

Do not use the controller in the following locations. Doing so could lead to equipment failure, damage or fire.

- Places exposed to flammable or corrosive gases, oil mist, or excessive dust that could cause insulation to deteriorate.
- Places subject to vibration or impact
- Places near strong electric circuit or places subject to inductive interference
- Places exposed to water dripping or direct sunlight
- Places where the controller is struck directly by air from heater or air conditioner

3-2. Mounting

\triangle CAUTION

In order to maintain safety and function, do not remove the case from the controller. If the case of the controller has to be removed for replacement/repair, contact your nearest Shimaden agent.

1) Cut a hole for mounting the controller in the panel by referring to "3.3. External dimensions and panel cutout."
2) The panel thickness should be $1.0-3.5 \mathrm{~mm}$.
3) The controller is provided with tabs for mounting. Insert as is from the front surface of the panel.
4) Controllers of the SRS0 Series are designed for mounting on the panel. Be sure to mount on the panel.
5) If mounted in series, provide ventilation so ambient temperature does not exceed $50^{\circ} \mathrm{C}$ due to temperature rise caused by heat generation.

3-3. External dimensions and panel cutout

SRS1

SRS3

SRS4

SRS5

3-4. Wiring

\triangle WARNING

- Be sure to turn off power before wiring. Failure to do so could result in electric shock.
- After wiring, do not touch terminal elements or other charged parts while conducting electricity. Failure to do so could result in electric shock.

Take the following precautions when wiring:

1) Wire in accordance with the terminal layout of section 3-5 and the terminal arrangement table of section 3-6.

After wiring, check and make sure the wiring is correct.
2) Crimp-type terminals fit $M 3$ screws. Use crimp-type terminals that are no wider than 6 mm .
3) For thermocouple input, use a compensating conductor that matches the type of thermocouple.
4) For RTD input, resistance for lead wires should be a maximum of 10Ω per wire.

All 3 wires should have the same resistance.
5) Input signal wires must not be accommodated with a strong electric circuit in the same conduit or duct.
6) Using shielded wiring (single point grounding) is effective for static induction noise.
7) Making input wiring short and twisting at regular intervals is effective for electromagnetic induction noise.
8) For power supply, use wiring or cable with sectional area of at least $1 \mathrm{~mm}^{2}$ that offers the same performance as 600 V vinyl insulated wiring.
9) Securely fasten the terminal element screw. Fastening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}(5 \mathrm{kgf} \cdot \mathrm{cm})$
10) Counter measure against lightning surge will be required for signal line over 30 m
11) If the instrument appears to be easily affected by power supply noise, use a noise filter to prevent malfunctioning. Mount the noise filter on the grounded panel and make the wire connection between the noise filter output and power line terminals of the controller as short as possible.

3-5. Terminal layout

Wire in accordance with the following terminal layout and terminal arrangement table.

SRS1

SRS3/SRS4/SRS5

3-6. Terminal arrangement table

Name of terminal	Description	Terminal No.	
		SRS1	SRS3/4/5
Power supply	100-240 V AC	7	13
	100-240 V AC	8	14
Input	RTD: A, thermocouple/voltage: +	4	22
	RTD: B, thermocouple/voltage: -	5	23
	RTD: b	6	24
Control	Contact: NO, SSR drive voltage/voltage/current: +	9	15
output 1	Contact: NO, SSR drive voltage/voltage/current: -	10	16
Event output	COM	1	19
	EV1	2	20
	EV2	3	21
External	COM	11	17
control input/DI	DI1	12	18

Note 1: With thermocouple/voltage input, do not connect anything to SRS1 terminal 6 nor SRS3/4/5 terminal 24 , as doing so will cause an error.

3-7. Operation preparations

Before operating the controller, you should first check the wiring and carry out the following by screen group setting method.
There is however no need to change the settings that have been set at the factory or already been made by the manufacturer.

1. Wiring check

Make sure the wiring to the connection terminals is correct. Incorrect wiring could result in burnout.

2. Power ON

Turn on the operating power. The displays, etc., light when power is supplied to the controller.
3. Measuring range setting

Select code from Measuring Range Codes of " $5-10$ Measuring range codes setting screen" of 5 screen group and enter.
4. Input temperature unit setting

For TC/Pt input, select temperature unit of " $5-11$ Input temperature unit setting screen" of 5 screen group and enter.
5. Input scaling setting

Set input scaling on " $5-12$ and 5-13 Input scaling lower/higher limit value setting screen" of 5 screen group and enter. Scaleover points can be set with given set values.
6. For $m V / V$ input, set lower and higher limit values of display contents for input signal on " $5-14$ and $5-15$ Display scaling lower/higher limit value setting screen" of 5 screen group. Set the position of a decimal point for said display contents on " $5-16$ Decimal point position setting screen" of 5 screen group.
7. Control mode (PID) setting

For ON-OFF (2 position) action, select OFF by "2-1 Output PID1 proportional band setting screen" of 2 screen group and enter. Sets hysteresis by " $2-2$ Output PID1 hysteresis setting screen." If using auto tuning (AT) with other than ONOFF hysteresis, this setting operation is not required.
8. Control output characteristics setting

Select RA (for heating) or DA (for cooling) according to output specification (heating/cooling) on "5-3 Output characteristics setting screen" of 5 screen group and enter.
9. Event type setting

Select types of event on "4-1 and 4-7 Event 1/2 type setting screen" of 4 screen group and enter. Set the event occurrence level on "0-10 and 0-11 FIX event $1 / 2$ (EV1/EV2) set value setting screen" of 0 screen group and enter.
10. Control execution

Select RUN on "0-1 Reset action setting screen" of 0 screen group and enter to start control.
11. Auto tuning execution

If not ON-OFF action, select ON on "0-12 Auto tuning (AT) action control screen" of 0 screen group and enter to execute auto tuning.

Note:

Precaution concerning initialization by data modification
Modifying measuring range code or type of event initializes related setting values (data). The data must therefore be set again.

4. Names and functions of parts on front panel

1) Measured value (PV) display
2) Target set value (SV) display
3) Action display
4) Operating keys

Name	Function
1) Measured value (PV) display	1. Measured value display LED (red) - Displays current measured value (PV) on basic screen (screen 0-0). - Displays type of parameter on each respective parameter display screen.
2) Target set value (SV) display	2. Target value display LED (green) - Displays current target set value (SV) on basic screen (screen 0-0). - Displays setting values on each respective parameter setting screen.
3) Action display	Displays status of controller. - RUN: Action display LED (green) Off: Control halt status (standby or reset) On: \quad Running by fixed value control status (FIX) Flashing: Running by program control status (RUN) - OUT: Control output (green) For output by contact or SSR drive voltage: Off: Output is OFF. On: Output is ON. For voltage/current output: Off when output is 0% and On when output is 100%. In other cases, flashes at intervals of 0.5 seconds (multiples of 0.5 sec .). - AT: Auto tuning LED (green) Off: Auto tuning not executed On: Auto tuning standby Flashing: Auto tuning being executed - MAN: Manual control LED (green) Off: Automatic control operating status Flashing: Manual control operating status - EV1: Event output 1 (orange) - EV2: Event output 2 (orange) Off: Event output is OFF. On: On: Event output is ON.
4) Operating keys	-(D): Parameter key Displays the next screen in various screen groups. - $\boldsymbol{\nabla}$: Down key Decrements setting values. - $\boldsymbol{\Delta}$: Up key Increments setting values. - ENT: Enter key Enters setting values. Displays various screen groups if no SV values are being modified on the basic screen.

5. Parameter diagram and setting

5-1. Parameter diagram

The overview of the parameter diagram is as follows. The windows of the various screens are divided as follows. The number at the top left of the window is the screen No.
Screen always displayed by key
Screen displayed when concerned optional item is added
\qquad Screen to be shown or hidden according to the setting
Monitor screen (without 3 minutes auto return)

5-2. Display when power is applied

When power is applied, the initial screen displays each screen for about 1 sec . and switches to the basic screen of screen group 0 as shown in the following figure.

5151	
E:	
Gut	Indicates control outputOUT output type (\ddagger : Contact, \boldsymbol{F} : SSR drive voltage, \boldsymbol{z} : Voltage, $\bar{\prime}$: Current)
\square	
0	Lower limit value of selected measuring range Higher limit value of selected measuring range
9370	
E'5	$0-0$ basic screen, 0 screen group from here Measured value (PV): Switches to screen for setting various functions by operation key from " $0-0$ Basic screen." Target set value (SV): For screen sequence, see parameter diagram on previous page.
\%	

5-3. Switching screens

Screen group 0: Screen group primarily set by end users
Screen group 1: Target set value setting screen group (multi SV)
Screen group 2: Screen group that sets PID constant
Screen group 3: Displayed if equipped with programming function (optional)
Screen group 4: Screen group that sets event and DI functions
Screen group 5: Initial setting screen group

(1) Switching screens within screen group 0

Each time the \varnothing key is pressed the screen display switches to the next screen.
If pressed when the last screen is displayed, returns to the " $0-0$ Basic screen."

(2) Switching between screen group 0 and screen group 1

Pressing the Eerr on the basic screen of screen group 0 switches to "1-0 FIX initial screen" of screen group 1.

0 screen group
$0-0$ Basic screen
1

(3) Switching screens within screen group 1

Each time the \varnothing key is pressed on the "1-0 FIX initial screen" in screen group 1, the screen display switches to the next screen. If pressed when the last screen is displayed, returns to the "1-0 FIX initial screen."
With screen group 1, each time the $\operatorname{Evr}+\square$ keys $(\Delta+\square$ keys only on the initial screen) are pressed, the screen is switched in the reverse direction.

(4) Switching to screen group 2

Pressing the Eeir key on the "1-0 FIX initial screen" switches to the "2-0 PID initial screen" of screen group 2 .

0 screen group	1 screen group			2 screen group
0-0 Basic screen	1-0 FIX initial screen			PID initial scr
\square	ENT	F-\%	ENT	Firic
17		EE:		EEE

(5) Switching screens within screen group 2

Each time the key is pressed the screen display switches from the various initial screens to the next screen. If pressed when the last screen is displayed, returns to the "2-0 PID initial screen." With screen group 2, each time the Eiri $+\Omega$ keys $(\Delta+\square$ keys only on the initial screen) are pressed, the screen is switched in the reverse direction.

(6) Switching to screen group 3

Screen group 3 is the program screen group. It is not displayed unless it is set as an optional item.
Pressing the Eirr key on the "2-0 PID initial screen" switches to the "3-0 PROG initial screen" of screen group 3.

0 screen group 0-0 Basic screen	1 screen group 1-0 FIX initial screen			2 screen group 2-0 PID initial screen		3 screen group
E	Ew	F-1	ENT	F-6	ENT	$\boldsymbol{\sigma}$
1		EEE		EEE		GEE

(7) Switching screens within screen group 3

Each time the σ key is pressed the screen display switches from the various initial screens to the next screen. If pressed when the last screen is displayed, returns to the "3-0 PROG initial screen." With screen group 3, each time the En $+\square$ keys $(\Delta+\Omega$ keys only on the initial screen) are pressed, the screen is switched in the reverse direction.

(8) Switching to screen group 4

Pressing the Err key on the " $3-0$ PROG initial screen" switches to the " $4-0$ EV/DI initial screen" of screen group 4.

(9) Switching screens within screen group 4

Each time the key is pressed the screen display switches from the various initial screens to the next screen. If pressed when the last screen is displayed, returns to the "4-0 EV/DI initial screen." With screen group 4, each time the $+\square$ keys $(\Delta+\square$ keys only on the initial screen) are pressed, the screen is switched in the reverse direction.

(10) Switching to screen group 5

Screen group 5 is the initial setting screen group. Various settings are made prior to using the controller. Pressing the airl key on the "4-0 EV/DI initial screen" switches to " $5-0$ INIT initial screen" of screen group 5 . Further pressing the Eerr key switches to the basic screen.

(11) Switching screens within screen group 5

Each time the key is pressed the screen display switches from the various initial screens to the next screen. If pressed when the last screen is displayed, returns to the " $5-0$ INIT initial screen." With screen group 5, each time the Ear $+\infty$ keys $(\boldsymbol{\Delta}+\Omega$ keys only on the initial screen) are pressed, the screen is switched in the reverse direction.

(12) Set data modification

Data is modified on the various screens by pressing the Δ or \square key. The modified data is entered by pressing the Eur key.

5-4. Auto return function

If no key operation is conducted for 3 minutes on the various screens (with the exception of the " $0-2$ Output monitoring screen," "0-3 Execution step No. monitoring screen," "0-4 Remaining time of program step monitoring screen," "0-5 Number of pattern executions monitoring screen," or "0-6 Execution PID No. monitoring screen"), the mode automatically returns to the "0-0 Basic screen" of screen group 0 (auto return).

5-5. Screen group 0 setting

The flow is given in " 6 . Screen explanation and setting items." This section however primarily contains a description of how to make settings.

As for the key operation method, the \square key switches to the next screen. The settings are selected with the Δ key or ∇ key on the various setting screens and entered with the Eeir key.
Pressing the Ent key is however not required for modifying output values on the output monitoring screen for manual adjustment.

(1) Setting target set values (SV)

1. To set target set values (SV), press and hold the Δ key or ∇ key on the " $0-0$ Basic screen" to cause all SV lamps to flash. Then, press the Δ key or ∇ key to increment or decrement the SV value (Pressing and holding causes the SV value to increase or decrease continuously with accelerating speed of change.). When the desired target set value is reached, enter by pressing the Eirl key.
2. When the setting is entered, the SV lamps of the target set value stop flashing. Target values cannot be set while auto tuning (AT) is being executed. To set target values, you must first cancel auto tuning.

Example: Set target set value to $500^{\circ} \mathrm{C}$.

0-0 Basic screen

(2) Manual setting of control output

1) Output monitoring screen (OUT) and switching and setting automatic/manual output

To toggle between automatic and manual, press and hold the Eri key at least 3 seconds on the " $0-2$ Output monitoring screen" or press the Eirf and Δ keys simultaneously.
During manual output, the MAN lamp flashes and it goes off during the automatic output operation.
Pressing the Δ key or ∇ key on the output monitoring screen during manual output enables you to set the manual output values.
To return to automatic output, press and hold the Eer key at least 3 seconds or press the and Δ keys simultaneously.

1. If output value is 100.0%, 6 is displayed on the output monitoring screen and the decimal point of 2. If output is contact or SSR drive voltage and the proportional band (P) setting is OFF, the output value is 0.0% or 100.0\%.
2. If output is voltage or current and the proportional band (P) setting is OFF, the output value is the lower limit value or higher limit value of the output limiter set.
Note 1: Manual output cannot be selected while automatic tuning (AT) is being executed. To select manual output, you must first cancel AT.
Note 2: If MAN is selected in "4-13 DI mode setting screen," external control input (DI) has a priority and manual output change cannot be conducted in 0-2 screen.

2) Supplementary explanation for use of manual control output

The correlation of the " $0-2$ Output monitoring screen" and automatic/manual output is as follows:

1. Output when automatic output is changed to manual is balanceless bumpless action, and the output value prior to the change is displayed. When manual is changed to automatic, it becomes bumpless action except if measured value (PV) is outside the proportional band.
2. If power supply is cut off and turned back on, control output action continues in automatic or manual mode, whichever was set when the power was shut off.
Note: You can switch to another screen in the manual mode as well, but you should note that control output is also manual mode. When the MAN LED lamp is flashing, the controller is in manual output mode (MAN).
3. Manual output (MAN) is canceled if RUN is switched to RST.

MAN operation is possible only in RUN mode.

(3) Auto tuning (AT)

Function that automatically processes and sets parameter P.I.D. for PID control. Processing time varies according to control.

1) AT execution

Pressing the Δ key on the "0-12 AT action control screen" causes the ar display at the bottom to change to ar and all SV lamps to flash.
Pressing the err key then executes AT. All SV lamps light and the AT lamp flashes.
When AT is executed, ON/OFF output action is repeated several times according to increment or decrement of measured values toward target set value. The PID value is saved in the internal memory and the action ends. Control based on the PID value in the memory simultaneously starts and the AT lamp lights out.

2) Cancellation of AT

To cancel AT before it finishes, selectarith the key on the "0-12 AT action control screen." When the key is pressed, AT is cancelled. All SV lamps light and the AT lamp then lights out.

> Note: If AT is canceled before completion, PID value is not changed.

3) AT cannot be executed

AT cannot be executed under any of the following conditions:

1. Control output is manual. (AT screen not displayed)
2. Standby (AT screen not displayed)
3. Measured value (PV) is scaleover. (AT screen not displayed)
4. Control output proportional band (P) is OFF. (AT screen not displayed)
5. If lock No. 2 or 3 is set on the key lock screen. (Not possible on AT screen, but possible with DI)

4) AT cancellation during execution

AT is canceled during execution under any of the following conditions:

1. If 200 continuous minutes elapse while output value is 0% or 100%.
2. When PV is scaleover.
3. When switched to standby action.

5) AT when in program mode

1. AT is not executed during ramp step execution, unless the ramp step is executed in the hold action mode.
2. AT ends when the final step is completed, even if the set number of executing program is 2 or more.
3. AT ends when all AT actions based on PID No. are completed before the final step ends.

(4) Reset (RST)/run (RUN)

The controller is equipped with reset mode for temporarily halting controller execution.
This operation mode is switched on the "0-1 Standby setting screen" or by DI operation.
If RUN1 or RUN2 is selected on the "4-13 DI mode setting screen," external control input (DI) is given priority and settings cannot be made on the 0-1 screen.

1. The RUN lamp is lit green while the controller is operating, and goes off upon entering the reset mode.
2. Controller output for reset is 0%.
3. When reset is executed during auto tuning (AT), the auto tuning is canceled.
4. When reset is executed in the manual output mode, the manual output mode is canceled.
5. When the power is turned off while the controller is in reset mode, reset mode continues when the power is turned back on.
6. If event standby action is specified when switching to run mode (RUN) from reset mode (RST), the specified standby action is executed.
7. If event latching is not engaged in the reset mode, alarms (Hd, Ld, od, id, HA, LA) are not output.

(5) Event setting

Types of event must be set before setting event values.
Modifying the event type codes however initializes setting values (data) related to events.

1) Types of event (alarm type) setting

Select event type code from among non, Hd, Ld, od, id, HA, LA, So, run, rot1, StPS, PtnS, EndS, HoLd, ProG, u_SL, d_SL, or GUA on the "4-1 EV1 type setting screen" of screen group 4 with the Δ key or ∇ key and enter the event type with
the Eair key.
Set event type of EV2 on the "4-7 EV2 type setting screen" in the same manner. The types of event for which event values can be set are the following 6 types:

Event type (alarm type) code: hiri: higher limit deviation
orl: outside higher/lower limit deviation
I: $=1$: lower limit deviation
ifil: higher limit absolute value

- inside higher/lower limit deviation

I-1: lower limit absolute value
If an event type (alarm type) code other than the above is selected, event values cannot be set.

2) Event values setting

Event values are set on the "0-10 FIX EV1 set values setting screen" and "0-11 FIX EV2 set values setting screen." Event values are displayed when one of the previously mentioned 6 types of events is selected.
Event values are set within the following setting range by pressing the Δ key or ∇ key on the 0-10 or 0-11 screen. When the event value setting has been decided, enter by pressing the key and all SV lamps light.

Setting range: Higher limit deviation or lower limit deviation: -1999-2000 digits
Outside or inside higher/lower limit deviation: 0-2000 digits
Higher limit absolute value or lower limit absolute value: Within measuring range

Note: Definition of digit

Used as a minimum unit for industrial amounts such as ${ }^{\circ} \mathrm{C}$ and $\% \mathrm{RH}$.
If input temperature range is $0.0-200.0,1$ digit $=0.1^{\circ} \mathrm{C}$.
If input temperature range is $0-1200,1$ digit $=1^{\circ} \mathrm{C}$.

Event values cannot be set during auto tuning (AT) execution. AT must first be canceled.

(6) Multi SV (target set values)

1) Multi $S V$

You can set 2 types of target set values (SV). (SV1, SV2)
SV values are set on the "1-3 FIX control SV1 setting screen" and "1-4 FIX control SV2 setting screen" and execution SV No. is selected on the "1-2 Execution SV No. selection screen."
PID No. during multi SV is SV1/PID1 and SV2/PID2.

2) External selection switching of multi SV

If equipped with external control input DI, when SV is allocated to DI, execution SV can be selected from SV1 or SV2 by DI input. Using 1 point of DI, SV is allocated on the " $4-13$ DI1 mode setting screen."
Please refer to the "8-4. External control input (DI)."

6. Screen explanation and setting items

0-0 Basic screen

 RUN2.
rSt (reset): Action stop, run (run): Selects execution action
For reset action, see $5-5$, section (4).

0-2 Output (OUT) monitoring screen

Displays measured value (PV) on the top and control output value of output on the bottom.
Output is monitored when in automatic mode and setting is modified when in manual mode.
Manual output setting range: $0.0-100.0$ (\%)
\square

* Output monitoring screens (OUT) and automatic/manual output
- You can toggle between automatic and manual by pressing and holding the arr key for at least 3 seconds on the output screen, or you can press the and Δ keys simultaneously
- The MAN lamp flashes during manual output.

For details, see $5-5$, section (2).

0-3 Execution step No. monitoring screen

Displays execution step No. during program operation SV decimal point flashes when in hold (HLD) mode.

0-4 Remaining time of step monitoring screen

Displays remaining time of step during program operation SV decimal point flashes when in hold (HLD) mode

0-5 Number of pattern executions monitoring screen
 SV decimal point flashes when in hold (HLD) mode.

0-6 Execution PID No. monitoring

Displays PID No. being executed. Displayed only in RUN mode.
SV decimal point flashes when in hold (HLD) mode.

0-7 Ramp process halting screen
Initial value: run
Setting range: StoP, run
Note: Displayed during ramp process.

0-8 Hold execution setting screen

FIX event is an event of fixed value control (FIX mode). Program control event values are set by the program screen group

0-10 FIX event 1 (EV1) set value setting screen

Event No. and type of event are displayed on the top. Initial value:

Higher limit deviation alarm (Hd): 2000 (digit) Lower limit deviation alarm (Ld): -1999 (digit) Outside higher/lower limit deviation alarm (od): 2000 (digit) Inside higher/lower limit deviation alarm (id): 2000 (digit) Higher limit absolute value alarm (HA): Measuring range higher limit value Lower limit absolute value alarm (LA): Measuring range lower limit

©

 valueSetting range:
Higher/lower limit deviation alarm: -1999-2000 (digit)
Outside or inside higher/lower limit deviation alarm: 0-2000 (digit)
Higher/lower limit absolute value alarm: Within measuring range
Displayed when EV1 alarm code Hd-LA are assigned,
and action point of allocated alarm type is set.
For details, see 5-5, section (5).
The screens are masked in the program mode (FIX OFF).

0-11 FIX event 2 (EV2) set value setting screen

Same as 0-10 screen above except EV2 instead of EV1 The screens are masked in the program mode (FIX OFF).

0-12 Auto tuning (AT) action control screen

Initial value: oFF
Setting range: oFF, on
®
AT is executed by on selection and is canceled by oFF selection proportional band (P) OFF setting.
Not displayed if STANDBY is set for 0-1 standby action setting screen. During AT execution, key operation other than AT cancel and key lock setting is not accepted. For AT action, see 5-5, section (3).

0-13 Latching release screen

Initial value: rst1
Setting range: rSt1, rSt2, ALL
Note: Displayed only when event latching is selected.
๑
If event latching is ON , even if event conditions no longer exist after event action, the event continues to be output. (Event selfhold) Cancels self-hold of the event
Setting and corresponding event No:
rSt1: EV1, rSt2: EV2
ALL: EV1, EV2, and all
If latching can be canceled, all SV lamps on the concerned setting screen flash. Pressing the 国 key cancels the concerned event.

To 0-0 Basic screen

0-0 Basic screen

Setting related to multi SV (target set values) for fixed value control
Fixed value for no programming function.
This setting is done when using multiple target set values (multi SV
fixed value control).

1-1 FIX control ON/OFF switching screen

1-2 Execution SV No. setting screen

1-3 Target set values SV1 setting screen

1-4 Target set values SV2 setting screen

1-5 Ramp higher limit value setting screen

Sets incremental ramp value (RAMP Up).
Initial value: oFF
Setting range: oFF, 1-9999 digits
Sets variation (incremental value) so that changing SV No. does not cause a sudden change of load and gradually changes the target value.

1-6 Ramp lower limit value setting screen

1-7 Ramp unit setting screen

1-8 Ramp ratio setting screen

To 1-0 Initial screen

PID setting screen group

With the SRSO Series, you can have 2 types of PID constants. In the case of fixed value control (FIX), target set values SV1 and SV2 correspond to PID1 and PID2 respectively.
In the case of program control, an execution PID No is allocated to each step.

1-0 FIX setting initial screen

2-0 PID initial screen

There are no setting items for this screen. Pressing the key displays the initial setting screen, "2-1 Output PID1 proportional band (P) setting screen."

Pressing the $\Delta+\infty$ keys displays the last screen, "2-16 Output PID2 higher limit output limiter setting screen."

2-1 Output PID1 proportional band (P) setting screen

There is basically no need to set if auto tuning (AT) is executed. For information on proportional band, see 8-2, section (1). If oFF is set, ON-OFF (2 position) action is set.

2-2 Output PID1 hysteresis (dF) setting screen

2-3 Output PID1 integral time (I) setting screen

2-5 Output 1 PID1 manual reset (MR) setting screen

To 2-7 screen

2-7 Output PID1 lower limit output limiter setting screen

2-8 Output PID1 higher limit output limiter setting screen

2-9 Output PID2 proportional band (P) setting screen

2-10 Output PID2 hysteresis (dF) setting screen

2-11 Output PID2 integral time (I) setting screen

2-12 Output PID2 derivative time (D) setting screen

2-13 Output PID2 manual reset (MR) setting screen

に,		
Cin	Setting range:	$-50.0-50.0(\%)$

Conducts offset correction for when I = oFF (P/PD action) This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$. For information on manual reset, see $8-2$, section (4)

2-14 Output PID 2 target set value function setting screen

Setting range: oFF, 0.01-1.00
Same as output target set value function 1 setting screen. This screen is not displayed when $\mathrm{P}=\mathrm{oFF}$.

2-15 Output PID2 lower limit output limiter setting screen

2-16 Output PID2 higher limit output limiter setting screen

Program setting

2-0 PID initial screen

ETV Pressing the EN key on the 2-0 screen switches to the program initial screen.

3-0 Program initial screen

There are no setting items for this screen. Pressing the Ω key displays the initial setting screen, "3-1 Start SV setting screen." Pressing the $\Delta+\Omega$ keys displays the last screen, "3-37 Step 10 PID No. setting screen."

3-1 Start SV setting screen


```
Initial value: 0
```

Setting range: Within SV limiter

If SV limiter is changed and exceeds the SV limiter range, the SV value conforms to the SV limiter value.

3-2 Final step setting screen

When the final step No. is changed and falls below the step No. being executed, the program ends or switches to the initial step upon the completion of the step being executed.

3-3 Number of pattern executions setting screen

Initial value:
Setting range: 1-9999
Sets number of times concerned pattern is executed
When the number is changed and falls below the current number of the program being executed, the program ends after completion of the final step

3-4 Start mode setting screen

Initial value: SV
Setting range: SV, PV

Sets program start mode
Setting the mode to SV leads to the program starting from the start SV value. Setting the mode to PV under certain conditions leads to the PV start function activation, and eliminates waste of time.
(For details, refer to "8-6 Start SV")

3-5 Guarantee soak zone setting screen

3-6-3-7 Pattern event level value setting screen
Higher limit deviation alarm (Hd): 2000 (digit)
Lower limit deviation alarm (Ld): -1999 (digit)
Outside higher/lower limit deviation alarm (od): 2000 (digit)
Inside higher/lower limit deviation alarm (id): 2000 (digit)
Higher limit absolute value alarm (HA): Measuring range higher limit value
Lower limit absolute value alarm (LA): Measuring range lower limit

Displayed when an alarm is assigned to the concerned event code, and sets program operation event action points.
This screen is not displayed when no alarm is assigned.

To 3-8 screen
$\downarrow \uparrow$
3－8 Step 1 SV setting screen

Erain		$\begin{array}{ll}\text { Initial value：} & 0 \\ \text { Setting range：} & \text { Within SV limiter }\end{array}$	
	6		
（2）	$\Delta+\square$	Sets SV value of The display cha （up to the final s If SV limiter is ch conforms to the	the concerned step． ges from $\left[\begin{array}{lll}5 & \text {－} & 1\end{array}\right]$ p）． anged and exceeds V limiter value．

3－9 Step 1 time setting screen

Event（EV）／DI settings

For information on standby action，see 8－1，section（3）．

3－0 PROG initial screen

Pressing the key on the 3－0 screen switches to the event（EV）／DI initial screen．

4－0 Event（EV）／DI initial screen

There are no setting items with this screen．Pressing the \varnothing key displays the initial setting screen，＂4－1 Event 1 （EV1）type setting screen＂ and pressing the $\Delta+\Omega$ keys displays the last screen，＂4－13 DI mode setting screen．＂

4－1 Event 1 （EV1）type setting screen

Initial value：$\quad \mathrm{Hd}$（higher limit deviation） Setting range non，Hd，Ld，od，id，HA，LA，So，run，rot1，StPS，PtnS， EndS，HoLd，ProG，u＿SL，d＿SL，GUA

Selected types of event are set in accordance with the event type code
4－2－4－6 screens are displayed when alarm type code is Hd，Ld，od，id 4－2－4－6 scr or LA．

4－2 Event 1 hysteresis setting screen

To 4－3 screen

Event type code table（used by 4－1 and 4－7）

Code	Event action type	Remark
ハーロー（non）	No selection	
Hid（Hd）	Higher limit deviation alarm	EV1 initial value
－－（Ld）	Lower limit deviation alarm	EV 2 initial value
aid（od）	Outside higher／lower limit deviation alarm	
Eid（id）	Inside higher／lower limit deviation alarm	
$\cdots \mathrm{F}$（HA）	Higher limit absolute value alarm	
18 （LA）	Lower limit absolute value alarm	
50 （So）	Scale over	
－ッ，－（run）	RUN signal	
－at i（rot1）	Control output inverted output	For control output Y only （contact only）
気に可（StPS）	Step signal	For program control only
F\％の5（PtnS）	Pattern signal	For program control only
Erー゙気（EndS）	Program end signal	For program control only
Histot（HoLd）	Hold signal	For program control only
Fration（ProG）	Program signal	For program control only
H．St（ $\mathrm{U}_{2} \mathrm{SL}$ ）	Upslope signal	For program control only
G＿E！（d＿SL）	Downslope signal	For program control only
EGF（GUA）	Guarantee soak	For program control only

4－3 Event 1 standby action code setting screen


```
Initial value: oFF
Setting range: oFF, 1, 2, 3
```

Sets type of standby action for event 1 from code table． Displayed when event type code is Hd，Ld，od，id，HA，or LA．

Standby action code table（used by 4－9）

Code	Description of standby action
\boldsymbol{Z}	Non standby
\boldsymbol{i}	When power is applied／When RST \rightarrow RUN
\boldsymbol{Z}	When power is applied／When RST \rightarrow RUN／
\boldsymbol{Z}	Control mode（non standby）

4－4 Event 1 output characteristics setting screen

Initial value：no
Setting range：no，nc
no：Normally open（output conductivity for event ON） nc：Normally closed（output conductivity for event OFF）

Selects whether contact output for event action is conductive or nonconductive．
Event output for power OFF is nonconductive for both no and nc．

4－5 Event 1 delay time setting screen

Initial value：oFF
Setting range：oFF，1－9999（seconds）
©

Outputs alarm after set time has elapsed from when event factor occurred．
Displayed when event type code is Hd，Ld，od，id，HA，or LA．
4－6 Event 1 latching setting screen

| Initial value：oFF |
| :--- | :--- | :--- |
| Setting range：oFF，on |
| oFF：Latching function unabled |
| on：Latching function enabled |

4－7 Event 2 （EV2）type setting screen

Initial value：Ld（lower limit deviation value）
Setting range： EndS，HoLd，ProG，u＿SL，d＿SL，GUA

Types of events selected for EV2 are set from the event type code table of 4－2 just as with EV1．
$4-8-4-12$ screens are displayed when alarm type code is Hd，Ld，od， id，HA or LA．

To 4－8 screen

$\downarrow \uparrow$

4－8 Event 2 action hysteresis setting screen

4－9 Event 2 standby action code setting screen

4－10 Event 2 output characteristics setting screen

4－11 Event 2 delay time setting screen

4－12 Event 2 latching setting screen

4－13 DI mode setting screen

析		itial value： etting range： roG，		
の日ッ			non，run1，run2，mAn，At，SV，rAmP，ACt，L＿rS，	
๑			HLd，AdV	
	$\triangle+\infty$	ect／set acco	rding to usage objective of external inp DI mode allocation type code	
		Code	External control input allocation type	Detection
		のロッ	No selection	
		－1，	RUN／RST	Level
		－ぃ，	RUN／RST	Edge
		ARA	MAN：Manual output	Level
		日t	AT：Auto tuning execution	Edge
		58	SV：External selection	Level
		－ 9,7	Ramp process halting	Level
		BE：	Output output characteristics（RA／DA）	Level
		－．， 5	L＿rS：Total unlatching	Edge
		Frat	ProG：Program	Level
		His	HLd：Hold signal	Level
		Brit	AdV：Advance	Edge

To 4－0 screen

Initial settings

4－0 Event（EV）／DI initial screen

Ear Pressing the 国 key on the 4－0 screen switches to＂ $5-0$ INIT initial screen．＂

5－0 INIT initial screen

There are no setting items with this screen．Pressing the key displays the initial setting screen，＂ $5-1$ Keylock setting screen，＂ and pressing the $\Delta+\Omega$ keys displays the final screen，＂ $5-18$ ．FIX upon PROG end and setting screen．＂

To 5－1 screen

5－1 Keylock setting screen

Cort
Initial value：oFF

Setting range：oFF，1，2， 3
©

Locks items you don＇t want to be modified．
To unlock，select oFF．
Data cannot be changed for a locked screen．
Lock No．and locked range are as follows：

Lock No．	Locked range
aF\％	Unlock（all data can be modified）
1	All data locked except screen group 0 and SV
\square	All data locked except SV
3	Only keylock setting can be modified

＊The＂0－13 Latching release screen＂cannot be key－locked．

5－2 Proportional cycle time setting screen

5－3 Output characteristics setting screen

Initial value：$\quad r A(-\overline{8})$
Setting range：rA，dA（8）
Sets characteristics of control output． rA：Reverse characteristics（for heating）
dA：Direct characteristics（for cooling）
For information on control output characteristics，see 8－3，section（3）．

5－4 Hysteresis mode

ets hysteresis mode when ON／OFF action is selected
The set mode will be reflected in OUT／PID 1－2
Initial value：$\quad \operatorname{CENT}(E \boldsymbol{E} \boldsymbol{E} \boldsymbol{E})$

CENT：Mode for making the center position of hysteresis SV value SVOF：Mode for making the output OFF position of hysteresis SV value SVON：Mode for making the output ON position of hysteresis SV value

5－5 SV limiter lower limit value setting screen

Initial value：Lower limit value of measuring range Setting range：Lower limit value of measuring range to higher limit value of measuring range -1 digit

Sets lower limit value to make setting range of target value fall within measuring range．
（Able to prevent incorrect setting in danger range，etc．）
5－6 SV limiter higher limit value setting screen

Initial value：
Setting range
Higher limit value of measuring range

Sets higher limit value to make setting range of target value fall within measuring range．
（Able to prevent incorrect setting in danger range，etc．）
Note：For SV limiter setting，the lower limit value is given preference to ensure that lower limit value is less than higher limit value．Consequently， higher limit value cannot be set less than lower limit value +1 digit．

If Sc＿L，Sc＿H，in＿L，or in＿H is changed，the respective values are set for

SV＿L／SV＿H．
5－7 PV bias value setting screen

To 5－9 screen

5-9 PV filter time setting screen

Initial value: 0 (seconds)
Setting range: 0-9999 (seconds)
Used to alleviate the effect if input varies radically or noise is superimposed.

5-10 Measuring range code setting screen

5-11 Input temperature unit setting screen

5-12 Input scaling lower limit value setting screen

5-13 Input scaling higher limit value setting screen

Initial value:
1370 (digit)
Setting range:

or linear range:
Selected from input types shown in the measuring range code table
Others:
Minimum setting is 10 digit/Maximum setting is within measuring range
Selected from measuring ranges shown in the measuring range code table

Setting the input range also limits the measuring range of the selected range.

5-14 Display scaling lower limit value setting screen

5-15 Display scaling higher limit value setting screen
 Initial value: 1370 (digit) Setting range: \quad (Sc_L set value) +10 to (Sc_L set value) +10000

Sets display scaling higher limit value for linear input (mV, V). Cannot be set by monitoring screen for sensor input.

5-16 Decimal point position setting screen


```
Initial value: No decimal point (0)
```

Setting range:
For linear input:
No decimal point (0) to 3 digits following decimal point (0.000)
Others:
No decimal point (0) to 1 digit following decimal point (0.0)

Sets decimal point position for display scaling.
(D) \triangle ET $+\infty$ Range with no decimal point cannot be set by monitor alone.

5-17 Time unit setting screen

5-18 FIX upon PROG end and setting screen

F,G (Displayed only when programming function is selected)

Initial value: oFF
Setting range: oFF,oN
Sets whether to proceed to the FIX mode upon program completion.

To 5-14 screen

Setting Example:

Range to be measured	Range code / Measuring range		Input scaling		Display scaling		Display range
			$5-12$ Lower limit value	$\begin{aligned} & 5-13 \\ & \text { Higher limit value } \end{aligned}$	$5-14$ Lower limit value	$\begin{aligned} & 5-15 \\ & \text { Higher limit value } \end{aligned}$	
10 to $1000{ }^{\circ} \mathrm{C}$	05	0 to $1370{ }^{\circ} \mathrm{C}$	10	1000	Unsettable		10 to $1000{ }^{\circ} \mathrm{C}$
0 to 10 mV	9	-10 to 50 mV	0	10	0.0	100.0	0.0 to 100.0 \%
1 to 5 V	日6	0 to 10 V	1.0	5.0	0.0	100.0	0.0 to 100.0 \%
4 to $20-\mathrm{mA}$	E6	0 to 10 V	1.0	5.0	0.0	100.0	0.0 to 100.0 \%
0 to $20-\mathrm{mA}$	E6	0 to 10 V	0.0	5.0	0.0	100.0	0.0 to 100.0 \%

For current input, install input terminals of the specified receiving impedance (250Ω) = and use code 86 (0 to 10 V).
The display range of sensor input will be the higher limit value from the lower limit value of the input scaling.

7．Measuring range codes

Select measuring range from the following table．
Note：Changing the code initializes all data related to measuring range．Change setting after switching to reset mode from the 0－1 screen．

Input type			Code	Measuring range（ ${ }^{\circ} \mathrm{C}$ ）	Measuring range（ ${ }^{\circ} \mathrm{F}$ ）
		B	\％${ }_{6}{ }^{\text {a }}$	$0-1800^{\circ} \mathrm{C}$	$0-3300{ }^{\circ} \mathrm{F}$
		R	日，＊6	$-50-1700^{\circ} \mathrm{C}$	$0-3100{ }^{\circ} \mathrm{F}$
		S		$0-1700^{\circ} \mathrm{C}$	$0-3100^{\circ} \mathrm{F}$
		K	\％ 6	$-199.9-800.0^{\circ} \mathrm{C}$	$-300-1500{ }^{\circ} \mathrm{F}$
		K	6	$0-1370^{\circ} \mathrm{C}$	$0-2500{ }^{\circ} \mathrm{F}$
		E	65	$0-700^{\circ} \mathrm{C}$	0－1300 ${ }^{\circ} \mathrm{F}$
		J	\％ 72	$-200-600^{\circ} \mathrm{C}$	$-320-1100{ }^{\circ} \mathrm{F}$
		T	\％ 8 ＊2	$-270-400^{\circ} \mathrm{C}$	$-450-750{ }^{\circ} \mathrm{F}$
		N	号豆＊ 6	$0-1300^{\circ} \mathrm{C}$	$0-2300{ }^{\circ} \mathrm{F}$
		PL II	67 ＊3	$0-1300^{\circ} \mathrm{C}$	$0-2300{ }^{\circ} \mathrm{F}$
		C（WRe5－26）	1 i	$0-2300^{\circ} \mathrm{C}$	$0-4200{ }^{\circ} \mathrm{F}$
		U	ジミ＊2	$-199.9-400.0^{\circ} \mathrm{C}$	$-300-750{ }^{\circ} \mathrm{F}$
		L	$1 \geqslant$	$0.0-600.0^{\circ} \mathrm{C}$	$0-1100{ }^{\circ} \mathrm{F}$
	Kelvin	K	i＇f ${ }^{\text {\％}}$	10．0－350．0K	
		AuFe－Cr	\％＊5	0．0－350．0K	
	RTD	Pt100	\＃i $=1$	$-200-600^{\circ} \mathrm{C}$	$-300-1100{ }^{\circ} \mathrm{F}$
			－ 717	$-199.9-300.0^{\circ} \mathrm{C}$	$-300-600{ }^{\circ} \mathrm{F}$
	mV	－10－50 mV	78	Display scaling range：－1999－9999 digit Span：10－9999 digit	
Voltage	V	0－10 V	E		

```
Display accuracy TC: }\pm(0.3%FS + 1digit + 2 ' C )
Pt: }\pm\mathrm{ (0.3%FS +1 digit + 0.1 }\mp@subsup{}{}{\circ}\textrm{C}
mV,V: }\pm\mathrm{ (0.3%FS + 1digit)
```

＊1 Accuracy guarantee is not applicable to $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)$ or below．
Accuracy of indicated values is $400-800^{\circ} \mathrm{C}\left(752-1472^{\circ} \mathrm{F}\right)$ is $\pm\left(0.5 \% \mathrm{FS}+1\right.$ digit $\left.+2^{\circ} \mathrm{C}\right)$
${ }^{*} 2$ Accuracy of indicated values below $-100^{\circ} \mathrm{C}\left(-148^{\circ} \mathrm{F}\right)$ is $\pm\left(1.5 \% \mathrm{FS}+1\right.$ digit $\left.+2^{\circ} \mathrm{C}\right)$
${ }^{*} 3$ Accuracy of indicated values $\pm\left(1.5 \%\right.$ FS +1 digit $\left.+2^{\circ} \mathrm{C}\right)$
＊4 Accuracy temperature range：
$10-30 \mathrm{~K}: \pm$（ $2.5 \% \mathrm{FS}+1$ digit $+2^{\circ} \mathrm{C}$ ）
$30-70 \mathrm{~K}: \pm\left(1.5 \% \mathrm{FS}+1\right.$ digit $\left.+2^{\circ} \mathrm{C}\right)$
$70-350 \mathrm{~K}: \pm$（1．0\％FS +1 digit $+2^{\circ} \mathrm{C}$ ）
＊5 Accuracy of indicated values is $\pm\left(1.0 \% \mathrm{FS}+1\right.$ digit $\left.+2^{\circ} \mathrm{C}\right)$
${ }^{*} 6$ Accuracy of indicated values below $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$ is $\pm\left(0.5 \% \mathrm{FS}+1\right.$ digit $\left.+2^{\circ} \mathrm{C}\right)$
Note：TC：Temperatures below $-273^{\circ} \mathrm{C}\left(-459{ }^{\circ} \mathrm{F}\right)$ or R．T．D．：Temperatures below $-240^{\circ} \mathrm{C}\left(-400^{\circ} \mathrm{F}\right)$ are subject to scaleover display．
Thermocouple：With or without a decimal point is selectable for TC and Pt．
Note：Unless otherwise designated，the factory default settings are as follows：

Input range	Code	Measuring range
Multi－input	$\mathrm{K} 0-1370^{\circ} \mathrm{C}$	
Voltage input	$0-10 \mathrm{~V}$	

8. Explanation of functions

This section contains a description of operation not covered in " $5-5$. Screen group 0 setting."

8-1. Events

(1) Alarm action

1) Deviation alarm

Sets alarm action points for deviation of measured values (PV) from target set values (SV).
For example, to trigger an alarm when measured value (PV) is $30^{\circ} \mathrm{C}$ or more and target set value is $20^{\circ} \mathrm{C}$, the higher limit deviation alarm is set to $10^{\circ} \mathrm{C}$.
Or to trigger an alarm when measured value (PV) is $30^{\circ} \mathrm{C}$ or less and target set value is $100^{\circ} \mathrm{C}$, the lower limit deviation alarm is set to $-70^{\circ} \mathrm{C}$.
This is convenient if you want alarm action point to be in accordance with deviation from target set values. The setting range is -1999-2000 digits.

2) Absolute value alarm

Sets alarm action point by absolute value. Higher limit absolute value alarm and lower limit absolute value alarm can be set at any point within measuring range.
For example, to trigger an alarm when measured value reaches $50^{\circ} \mathrm{C}$ or higher, set the higher limit absolute value alarm to $50^{\circ} \mathrm{C}$. Or to trigger an alarm when measured value reaches $20^{\circ} \mathrm{C}$ or lower, set the lower limit absolute value alarm to $20^{\circ} \mathrm{C}$.

3) Standby action

If event standby action is set to 1 (or 2), an event is not output even if the measured value is in the alarm action area (ON area) when power is applied, standby is canceled, or target set value is changed.
Once outside the alarm action area (OFF area) and standby action is canceled, an event is output when it once again enters the alarm action area.

4) Non-standby action

If event standby action is set to OFF and 3 , an event is always output when the measured value is within the alarm action area.
5) Control mode

If standby action is set to 3 , alarm is not triggered when scaleover occurs.

(2) Event standby action selection

The following are supplementary explanations of operation with "4-3 and 4-9 Event $1 / 2$ standby action code setting screen" of screen group 4.

1. If using event output as an alarm, set from 1 or 2 of standby action code table.
2. If using event output for control, set 3 (control mode). If 3 is set, however, event output remains OFF for abnormal input.

3 . If set to 1 , standby action functions when power is applied or standby is cancelled.
4. If set to 2 , standby action functions when power is applied, when standby is canceled and when execution SV is changed

Note 1: Standby action is canceled immediately if changed to OFF or 3 during standby action.
Note 2: When scaleover occurs, standby action is canceled.
(3) Event selection alarm action diagrams

The following diagrams describe alarm actions selected for event (EV1/EV2).
Δ : SV value
$\mathbf{\Delta}$: Alarm action point setting value

Hif: Higher limit deviation alarm

1. 1: Lower limit deviation alarm

Er: Outside higher/lower limit deviation alarm

5a: Scaleover

（4）Control output inverted output

If equipped with contact output for control output，inverted output can be executed for control output by selecting rat i （control output inverted output）for the event code．Output is，however，OFF for both control output and event when the power is off．
Also，inverted output for control output can be executed as well during standby．

（5）Event status output action

1）（RUN）RUN signa：

2）に上゙ーシ
（STPS）
Step signal：
3）$F \mathscr{F}$
（PTNS）
Pattern signal：
4）Eッヂ（ENDS）Program end signal
5）HEA（HOLD）Hold signal：

7） 4 ． 5 （U＿SL）Upslope signal：
8）＿－Si（D＿SL）Downslope signal：
9）
（GUA）Guarantee soak signal：

Output during program mode when the program is controlled by fixed value control（FIX mode）action．
Output for 1 second each time step in program control execution is completed．
Output for 1 second each time pattern in program control execution is completed．
Output for 1 second when program control execution is completed．
（Output even if program is forcibly completed halfway．）
Output when holding（temporary halt of program）during program control．
Output when set to program mode．
Output during upslope step execution during program control．
Output during downslope step execution during program control．
Output when guarantee soak is engaged．

8－2．P．I．D．

（1）P（proportional action）

Sets percentage at which control output varies for measuring range．The size of control output varies in proportion to the difference between PV value and SV value．
The slighter the proportional band is，the more intense output variation and proportional action are．If it is too slight，control vibrates and the results of control are similar to ON－OFF action．

（2）I（integral time）

Function that corrects offset（constant deviation）produced by proportional band．The longer the integral time，the weaker the corrective action and the shorter the time，the stronger the action is，but control may vibrate due to integral hunting．

（3）D（derivative time）

Enhances stability by estimating change in control output and suppressing integral overshoot．
The longer the derivative time，the stronger derivative action is，but control results may be similar to vibration．
（4）MR（manual reset）
During PID action，offset is automatically corrected by integration（＂I＂），but if＂l＂is OFF，offset is not corrected．If so，offset can be corrected by manually increasing／decreasing output．This is called＂manual reset．＂

（5）SF（target value function）

This function determines the strength of the overshoot preventing function when operating expert PID．
Expert PID suppresses overshoot by conducting operation for predicting and canceling the amount of overshoot by referring to values such as the PID value and the variation of PV value until the target set value（SV）（or the proportional band）is reached．Target value function is effective only when there is an integral operation（PI，PID operation）．
SF＝OFF：Expert PID does not function and normal PID operates．
SF＝1．00：\quad Minimize overshoot for expert PID control．
SF \rightarrow Small：Overshoot preventing function works limitedly．
$S F \rightarrow$ Large：Overshoot preventing function works fully．

8-3. Control output

(1) Lower limit and higher limit limiter setting

1) Output limiter limits minimum and maximum values of control output and helps secure minimum temperature, suppress control overshoot, and achieve other objectives.
2) Lower limit value is given priority for output limiter setting. If minimum value is set above the higher limit value, the higher limit value forcibly becomes the lower limit value $+1 \%$.
Higher limit value cannot be set less than lower limit value $+1 \%$.

(2) Proportional cycle

The correlation between proportional cycle time and control output are as shown in the following figure.
(This figure illustrates the case of heat action.)

1) Output 20%

During the time equivalent to 20\% when proportional cycle time is 100%, output is ON and is OFF for the time equivalent of the remaining 80%.
2) Output 60%

During the time equivalent to 60% when proportional cycle time is 100%, output is ON and is OFF for the time equivalent of the remaining 40%.

(3) Control output characteristics

For heating, set to RA (reverse action) and for cooling set to DA (direct action).

(4) Two-position action

When conducting two-position action, frequent switching of output ON/OFF is prevented by utilizing hysteresis.

1) Hysteresis mode is CENT ($\boldsymbol{E} \boldsymbol{\sigma}$) :

2) Hysteresis mode is SVOF (Gロロ):

RA action

RA action

DA action

8-4. External control input (DI)

Input must be retained for at least 500 ms to receive external control input of the SRS0 Series.
Assignment of functions by DI input is conducted on the "4-13 DI mode setting screen."
Function assigned to DI cannot be conducted by key operation. (DI input is prioritized.)
However, AT and unlatching can be conducted by key operation even if assigned to DI.
(1) Controller action execution (RUN1)

You can toggle between controller action execution/stop. Level action.
DI input OFF: Switches to the reset (stop) mode. SRS0 stops action.
DI input ON: Switches to the RUN (execution) mode. PID operation control is executed (program control execution).

Note: If DI is ON when power is applied, switches immediately to the RUN (execution) mode.
(2) Controller action execution (RUN2)

The RUN (execution) and reset (stop) modes are switched each time DI input is turned ON (edge action).
Note: If DI is ON when power is applied, does not switch immediately to the RUN (execution) mode.
(3) Manual output (MAN)

Switches to manual output. Level action.
DI input OFF: Ordinary feedback control action is executed.
DI input ON: Control output is executed manually; feedback control is not executed.
(4) Auto tuning execution (AT)

Auto tuning can be executed from outside. Edge action.
Once DI input is turned ON, auto tuning is executed.
If SV No. is switched by DI during AT execution, it is not applied until AT is finished.
AT in the RUN (execution) mode cannot be released by DI. Front key is used for releasing AT in the RUN (execution) mode (0-12 screen).
(5) SV selection (SV)

Set values of SV1-SV2 can be switched to execution SV. DI is level action.

DI	Selected SV No.
0	1
1	2

Execution SV No. and execution PID No. correspond with each other as SV1/PID1 and SV2/PID2.
(6) Output characteristic (ACT)

Switches output characteristics of control output (RA/DA).

When DI input OFF:	RA (heating)
When DI input ON:	DA (cooling)

(7) Program (PROG)

Switches FIX (fixed value control) and PROG (program) modes. Level action.

$$
\begin{array}{ll}
\text { DI input OFF: } & \text { Fixed value control (FIX mode) } \\
\text { DI input ON: } & \text { Program (PROG) mode }
\end{array}
$$

(8) Hold signal (HLD)

Program execution can be halted from outside. Level action. DI input ON:

Stops program step time.

(9) Advance (ADV)

During program control execution, once DI input is turned ON , the current step is completed, and operation forcibly advances to the next step (edge action).

(10) Total unlatching (L_RS)

Events can be unlatched from outside. Edge action.
Once DI is turned ON, all event output is unlatched. Event output is however not unlatched if event output conditions have been satisfied.

8-5. Change in position of decimal point

Position of decimal point can be changed for linear input and for TC and RTD range with decimal point. You should keep in mind that operation differs for TC and RTD range when using linear input.

(1) Change in position of decimal point for linear input

Sets position of decimal point to be displayed.
If changing position of decimal point from 0.0 to 0.000 , display scaling changes from $0.0-100.0$ to $0.000-1.000$.
(2) Change in position of decimal point of TC/RTD range

Display of places below the decimal point can be switched to display or mask.
If changing position of decimal point from 0.0 to 0 , the places below the decimal point are rounded off before being masked.
If changing position of decimal point from 0 to 0.0 , the places below the decimal point are displayed again.
Things requiring special attention:

- Parameter values affected by range change (digit) also change similarly.

Example: If range is " 4 " (PV bias)
[Position of decimal point: 0.0] \rightarrow Change \rightarrow [Position of decimal point: 0$] \rightarrow$ Change again \rightarrow [Position of decimal point: 0.0]
$\begin{array}{llll}\text { Measuring range lower limit value: } & -199.9 & -200 & -199.9\end{array}$
Measuring range higher limit value: $400.0 \quad 400 \quad 400.0$
PV bias: $20.5 \quad 2121.0$
Note: As described above, after changing the position of the decimal point, the value may not revert to the original value when the position of the decimal point is changed back.

- When measurement range is changed, the position of the decimal point returns to the default position.
- If position of decimal point is 0 , display accuracy is not guaranteed.

8-6. Start SV

When the start step of the program operation is controlled by ramp control, if the start SV value greatly differs from PV value, the action time may be wasted. To prevent this, the start SV value may conform to the PV value when starting the operation.
(1) When start SV function is invalid

When PV value does not fall between start SV value (SSV) and target step 1 SV value (SV1)

(2) When start SV function is valid

When PV value falls between start SV value (SSV) and target step 1 SV value (SV1)

T1: By eliminating this duration, starts from PV value.
T2: Step 1 executing duration
(3) When start SV function is valid and start step is skipped

When PV value exceeds target step 1 SV value (SV1)

8-7. Guarantee soak (GUA)

When the operation switches from ramp step to flat step, if PV deviates from the designated guarantee soak zone, the next step does not start. This function guarantees a sufficient duration during which the flat step is executed.
(1) When OFF

Even when PV has yet to reach SV1, the operation switches to step 2 after the step 1 duration has elapsed.

(2) When guarantee soak zone is set

1) When the discrepancy between $S V$ ramp and $P V$ is small

Only when PV falls within the guarantee soak zone, the operation switches to step 2 after the step 1 duration has elapsed.

2) When the discrepancy between SV ramp and PV is large

When PV has yet to reach the guarantee soak zone after the step 1 duration has elapsed, guarantee soak (GUA) is executed until the PV reaches the zone.

Note: Guarantee soak (GUA) is executed even when step 1 is flat (SSV = SV1), as well as when step duration is set to 00:00 under certain required conditions.

9. Causes and remedy of trouble and errors

9-1. Causes and remedy of trouble

Problem	Cause	Remedy
1) Error message is displayed.	See "Causes and remedy of errors."	See "Causes and remedy of errors."
2) Displayed measured value (PV) seems to be incorrect.	1) Set measuring range code is different from that of input sensor/input signal. 2) Erroneous wiring to input terminals of sensor.	1) Check if set measuring range code is the same as input signal. 2) Check wiring to input terminals of sensor.
3) Front panel display goes off and does not function.	1) Problem with power supply and/or wiring connection. 2) Something is wrong with the instrument.	1) Inspect power supply/wiring connections and check wiring. 2) Inspect, repair or replace the instrument.
4) Keys do not work.	1) Key lock is in effect. 2) Operation is being executed. 3) Something is wrong with the instrument.	1) Cancel key lock. 2) Stop the operation (RST) on 0-1 screen to change parameters that cannot be modified during operation execution (RUN). 3) Inspect, repair or replace the instrument.
5) ON-OFF action of control output is too fast.	1) ON-OFF "hysteresis range" is too narrow.	1) Widen ON-OFF "hysteresis range."

9-2. Causes and remedy of errors

(1) Abnormal measured input

Screen display	Problem	Cause	Remedy
$\begin{aligned} & \mathrm{HHAH} \\ & (\mathrm{HHHH}) \end{aligned}$	Higher limit scaleover	1) Break in thermocouple input wiring. 2) Break in RTD input A wiring. 3) Input measured value exceeded higher limit of measuring range by 10%.	1) Check thermocouple input wiring for possible break. If there is nothing wrong with wiring, replace thermocouple. 2) Check RTD input A terminal wiring for possible break. If there is nothing wrong with wiring, replace RTD. 3) For voltage or current input, check the measurement signal transmission unit. Check if set measuring range code is the same as input signal. 4) Check if input scaling setting is adequate.
$\begin{array}{ll} 1!1 \\ (L L L L L) \end{array}$	Lower limit scaleover	Input measured value fell below lower limit of measuring range by 10%.	1) Check for measurement input wiring for reverse polarity or possible break. 2) Check if input scaling setting is adequate.
$\underset{(b--)}{b-\cdots}$	Break in RTD input wiring	1) Break in B wiring 2) Multiple break in ABB wiring	Check RTD input ABB terminal wiring for possible break. If there is nothing wrong with wiring, replace RTD.
$\begin{aligned} & \text { C. } \mathrm{HH}, \\ & \text { (CJHH) } \end{aligned}$	Higher limit scaleover of cold junction (CJ) of thermocouple input	Ambient temperature has exceeded $80^{\circ} \mathrm{C}$.	1) Reduce ambient temperature to the level provided in the environment conditions for the product. 2) If ambient temperature has not exceeded $80^{\circ} \mathrm{C}$, examine the instrument.
EA: (CJLL)	Lower limit scaleover of cold junction (CJ) of thermocouple input	Ambient temperature has fallen below $20^{\circ} \mathrm{C}$.	1) Raise ambient temperature to the level provided in the environment conditions for the product. 2) If ambient temperature has not fallen below $-20^{\circ} \mathrm{C}$, examine the instrument.

[^0]
10．Parameter setting record

For the sake of convenience，you should record your settings and selections． Initial values for code $05(\mathrm{~K})$ are given here．

Screen No．	Parameter（item）／screen		Initial value	Setting／selection	Record
0－0	Basic screen（SV）	0 （ 0	0		
0－1	Reset action setting screen	－	－5t		
0－2	Output monitoring	－	\cdots		
0－3	Execution step No．monitoring	，	－		
0－4	Remaining time of step monitoring	－	M		
0－5	Number of pattern executions monitoring	，			
0－6	PID execution monitoring		，		
0－7	Ramp process halt		1049		
0－8	Hold	HLd（ HfO	aFF		
0－9	Advance	AdV（Ficiti）	QFF		
0－10	FIX event 1 set value setting	E1Hd（EiHas）	E000		
0－11	FIX event 2 set value setting	E2Ld（EEO日	1959		
0－12	AT action	At（ FiL E ）	OFF		
0－13	Latching release		－5ti		
1－0	FIX initial screen	FiX（ $F_{1}^{-6} \mathbf{H}_{1}$ ）	5Et		
1－1	FIX ON／OFF	FiX（F－5）	$0 \rightarrow$		
1－2	SV No．	SVNo．（5aiona）	i		
1－3	SV1 setting	SV1（5日i）	0		
1－4	SV2 setting	SV2（5ize）	İ		
1－5	Ramp incremental value	rP＿u（r－F－口）	AFF		
1－6	Ramp lower limit value		aFF		
1－7	Ramp unit		55		
1－8	Ramp ratio		41		
2－0	Initial screen	Pid（F－日）	5Et		
2－1	OUT PID1 P	P1（ $\boldsymbol{F}_{\mathbf{\prime}}^{\mathbf{\prime}} \mathbf{i}$ ）	3.6		
2－2	OUT PID1 hysteresis		$\underset{\square}{\square}$		
2－3	OUT PID1 I		100		
2－4	OUT PID1 D		3 O		
2－5	OUT PID1 manual reset	mr1（6，	0.10		
2－6	OUT PID1 target value function	SF1（ $5, \mathrm{~F}$ i）	C． 40		
2－7	OUT PID1 lower limit limiter		Cin		
2－8	OUT PID1 higher limit limiter	o＿H1（a，Hir）	150000		
2－9	OUT PID2 P		3.18		
2－10	OUT PID2 hysteresis		\bigcirc		
2－11	OUT PID2 I				
2－12	OUT PID2 D	d2（	30		
2－13	OUT PID2 manual reset	$\mathrm{mr} 2(\boldsymbol{\square}$	Citio		
2－14	OUT PID2 target value function	SF2（5，\％	ci．40		
2－15	OUT PID2 lower limit limiter	O＿L2（a－i家）	Cin		
2－16	OUT PID2 higher limit limiter		8 CO		
3－0	Initial screen		5EF		
3－1	Start SV value	StSV（5t5日）	\square		
3－2	End step	End（ER日）	10		
3－3	Number of pattern executions	Pcnt（F）日，	1		
3－4	Start mode	S＿md（5，	51		
3－5	Guarantee soak		AF\％		
3－6	Pattern EV1 level value	P1Hd（ F i ifici）	－0808		
3－7	Pattern EV2 level value		－959		
3－8	Step 1 SV value	S＿01（5－Ei）	E		
3－9	Step 1 time	t＿01（ 5 － i i）	\％： 0		
3－10	Step 1 PID No．	P＿01（ $\bar{F}-\mathrm{F} \boldsymbol{i}$ i）	\square		
3－11	Step 2 SV value	S＿02（5－EEV）	I		
3－12	Step 2 duration		Fin 8		
3－13	Step 2 PID No．		0		
3－14	Step 3 SV value		\％		
3－15	Step 3 time		A： 08		
3－16	Step 3 PID No．		\square		
3－17	Step 4 SV value	S＿04（5－64）	\square		
3－18	Step 4 time	t＿04（\％－ 5 － 4 ）	\％1808		
3－19	Step 4 PID No．		0		
3－20	Step 5 SV value	S＿05（5－65）	8		
3－21	Step 5 time		\％： 80		
3－22	Step 5 PID No．		\square		
3－23	Step 6 SV value	S＿06（5－R6）	0		
3－24	Step 6 time	t＿06（\％－66）	\％： 8		
3－25	Step 6 PID No．	P＿06（\％）「G）	0		

Screen No．	Parameter（item）／screen		Initial value	Setting／selection	Record
3－26	Step 7 SV value	S＿07（5．0．7）	0		
3－27	Step 7 time		7： 70		
3－28	Step 7 PID No．		\％		
3－29	Step 8 SV value	S＿08（5－5日）	\square		
3－30	Step 8 time		7\％ 070		
3－31	Step 8 PID No．		I		
3－32	Step 9 SV value		0		
3－33	Step 9 time	t＿09（	\％： CO		
3－34	Step 9 PID No．	P＿09（ \boldsymbol{F}_{-1}	0		
3－35	Step 10 SV value	S＿10（5－ 10	\square		
3－36	Step 10 time		\％： 0		
3－37	Step 10 PID No．		I		
4－0	Initial screen	EVdi（Ebiciol	5E：		
4－1	Event 1 type	E1＿m（E1．$\overline{\text { a }}$ ）	H：		
4－2	Event 1 hysteresis		8		
4－3	Event 1 standby action		AF\％		
4－4	Event 1 output characteristics		na		
4－5	Event 1 delay time	E1dL（Efin）	AFF		
4－6	Event 1 latching		GF\％		
4－7	Event 2 type	E2－m（20－6）	1：		
4－8	Event 2 hysteresis		\cdots		
4－9	Event 2 standby action	E2－I（E－5）	6F\％		
4－10	Event 2 output characteristics	E2＿A（	170		
4－11	Event 2 delay time	E2dL（EAL	aF：		
4－12	Event 2 latching	E2＿L（ $\mathrm{E}_{\text {－}}$	OFF		
4－13	DI mode	Di （ Cl^{-}）	90，		
5－0	Initial screen	init（arロー）	SEt		
5－1	Keylock setting		OFF		
5－2	Proportional cycle time	O＿C（ 0 －	Y： \bar{i}		
5－3	Output characteristics	Act（ $\overline{1}, \mathrm{E}$ ）	－ 7		
5－4	Hysteresis mode		EEnt		
5－5	SV limiter lower limit value	SV＿L（ 5 目，í）	0		
5－6	SV limiter higher limit value	SV＿H（5，	1370		
5－7	PV bias value		I		
5－8	PV ramp	PV＿S（Forala）	1000		
5－9	PV filter time	PV＿F（FG，F \quad ）	I		
5－10	Measuring range code	rAnG（roriniou）	Multi：$\quad 05$		
5－11	Input temperature unit		－		
5－12	Input scaling lower limit value	in＿L（ $-2 \rightarrow-\mathrm{L}$ ）	0		
5－13	Input scaling higher limit value	in＿H（an，	1379		
5－14	Display scaling lower limit value	Sc＿L（ 5 －	\ldots		
5－15	Display scaling higher limit value		1370		
5－16	Decimal point position		I		
5－17	Time unit	t＿Un（\％－Lİ）	Hi\％		
5－18	Transition to FIX upon PROG end and setting	EFiX（EF5：	－\％\％		

- Display

Digital display:	Measured value (PV):	7-segment red LED, 4 digits
	Target set value (SV):	7-segment green LED, 4 digits

By operating 4 front panel keys ($\Omega, \boldsymbol{\nabla}, \Delta$, ENT)
Setting method:
Input range setting:
SV limiter:
Setting lock:
Input range used within measuring range is settable by given input scaling.
Settable within both input scaling range and display scaling range.
OFF, 3-stage setting (1-3)

■ Input

- Input common specification

Input type:
Input scaling:
Decimal point position: PV bias: PV ramp: PV filter: Scaleover display: Isolation:

- Thermocouple input (TC)

Input type: Display range:

Input resistance: Cold junction compensation: Internal cold junction compensation accuracy: $\pm 2^{\circ} \mathrm{C}\left(18-28^{\circ} \mathrm{C}\right)$ Burnout function: External resistance tolerable range:

- RTD input

Input type:
Display range:
Lead wire tolerable resistance range Measured current:

- Voltage input Input type:
Display scaling rang
Display caling rane. -1999-9999 digits
input resistance: $\quad 500 \mathrm{kO}$ or above

- Control mode

Expert PID control with auto-tuning function

No. of SV:
No. of PID: Proportional band: Integral time: Derivative time: Manual reset: ON-OFF hysteresis: Proportional cycle: Control output characteristics: Manual output: Output update cycle: Manual control: Output setting range: Setting resolution:

2
2 classes
OFF, 0.1-999.9\% (ON-OFF action when OFF)
OFF, 1-6000 sec. (P or PD action when OFF)
OFF, 1-3600 sec. (P or PI action when OFF)
-50.0-50.0\% (Valid when I = OFF)
1-999 digits (Valid when $\mathrm{P}=\mathrm{OFF}$)
$1-120 \mathrm{sec} ., 1 \mathrm{sec}$. step
Reverse/direct selectable
$0.0-100.0 \%, 0.1 \%$ step
500 ms
Balanceless/bumpless action (switch through front panel key switch or external control input [DI])
0.0-100.0\%
0.1\%

- Control output

Contact (Y):
SSR drive voltage (P):
Current (I):
Voltage (V):
Output resolution:

Contact (1a), 240V AC, 2.5 A: Resistive load/1 A: Inductive load
$12 \mathrm{~V} \pm 1.5 \mathrm{~V} \mathrm{DC}$ (max. load current 20 mA)
$4-20 \mathrm{~mA}$, max. load resistance 600Ω
$0-10 \mathrm{~V}$, max. current 2 mA
10000 digits

- Event output (EV)

No. of output:
Constant rating:
Function:

- Setting range

Absolute value:
Deviation:
Higher/lower deviation:
Action:
Hysteresis:
Action delay time:
Standby action:

Latching:
Output characteristics:
Output update cycle:
Isolation:

Standard 2 points (EV1-EV2)
Contact (1a), 240 V AC, 1 A: Resistive load (common)
Display: Action
Hd: \quad Higher limit deviation value action
Ld: Lower limit deviation value action
od: Outside higher/lower limit deviation action
id: Inside higher/lower limit deviation action
HA: \quad Higher limit absolute value action
LA: Lower limit absolute value action
SO: Scaleover
RUN: Control execution
ROT1: Control output inverted output (contact output only)
STPS: Step signal
PTNS: Pattern signal
ENDS: Program end signal
HOLD: Hold signal
PROG: Program signal
U_SL: Upslope signal
D_SL: Downslope signal
GŪA: Guarantee soak
Within both measuring range and PV limiter (both higher and lower limit)
-1999-2000 digits (both higher and lower limit)
$0-2000$ digits (both inside and outside)
ON-OFF action
1-999 digits
OFF, 1-9999 sec.
Separate setting (separate output), selectable from any of 4 types below

1) Without
2) Standby 1 (when starting power, when RST ON \rightarrow OFF)
3) Standby 2 (when starting power, when RST ON \rightarrow OFF, when execution SV is changed)
4) Standby 3 (Does not output when there is input abnormality.)

Selection from Yes/No
Selection from NO/NC
500 ms
Insulated from all input and output (uninsulated within EV)

- External control input (DI)

No. of input:
Input type:
Input rating:
Input action:
Input holding time:
Function:

Standard 1 point
Level input, edge input
Voltage 5 V DC ($2.5 \mathrm{~mA} / 1$ input)
Non-voltage contact or open collector
500 ms
Display: Action: Input type
RUN1: Starts control when ON: Level
RUN2: Starts control when ON: Edge
MAN: Manual control output mode: Level
AT: AT execution: Edge
SV: SV switch: Level
RAMP: Ramp halt: Level
ACT: Output characteristics: Level
L_RS: Event latching release: Edge
PROG: Program switch: Level
HLD: Hold signal: Level
ADV: Advance signal: Edge

No. of pattern:
No. of step:
Power failure
compensation:
Guarantee soak zone:
Time accuracy:

1
10
Without
oFF, 1-999 digits
Set value $\times 0.3 \%$

- General specifications

Data storage:

- Operating ambient

Ambient temperature:
Humidity range:
Storage temperature:
Over voltage category:
Elevation:
Pollution class:
Supply voltage:

- Power consumption:
- Input noise removal ratio:
- Applicable standard:
- Power supply short-break time:
- Insulation resistance:
- Dielectric strength:
- Material of case:
- External dimensions:
- Mounting:
- Applicable panel thickness
- Panel cutout:
- Weight:

By non-volatile memory (EEPROM)
$-10-50^{\circ} \mathrm{C}$
Below 90\%RH (no condensation)
Derating from $50^{\circ} \mathrm{C}$
$-20-65^{\circ} \mathrm{C}$
II
Max. 2000 m
2 (IEC 60664)
$100-240 \mathrm{~V} \mathrm{AC} \pm 10 \%(50 / 60 \mathrm{~Hz})$
10 VA
Normal mode: 50 dB or above $(50 / 60 \mathrm{~Hz})$
Common mode: 120 dB or above $(50 / 60 \mathrm{~Hz})$
Safety: IEC61010-1 and EN61010-1
EN IEC 61010-2-030
EMC: EN61326-1
Within 50 ms , normal action continuation (when 200V)
Input-output terminal and power terminal interval, $500 \mathrm{~V} \mathrm{DC}, 20 \mathrm{M} \Omega$ or above
Input-output terminal and power terminal interval, 2300 V AC, 1 min.
Resin mold (UL94V-1 equivalent)
SRS1: H48 \times W48 \times D66 mm, panel depth: 62 mm
SRS3: H96 \times W96 \times D69 mm, panel depth: 65 mm SRS4: H96 \times W48 \times D66 mm, panel depth: 62 mm SRS5: H48 \times W96 \times D66 mm, panel depth: 62 mm
Panel flush mounting
$1.0-3.5 \mathrm{~mm}$
SRS1: H45 × W45 mm
SRS3: H92 × W92 mm
SRS4: H92 \times W45 mm
SRS5: H45 × W92 mm
SRS1: Approx. 88 g
SRS3: Approx. 180 g
SRS4: Approx. 115 g
SRS5: Approx. 115 g

* With regard to the technical details of products, please contact your nearest Shimaden dealer.

The contents of this manual are subject to change without notice.
Temperature and Humidity Control Specialists

[^0]: When the controller does not operate as intended and you suspect it may be broken, read the instruction manual and inspect once again.

 If there is something wrong with the controller or there is something you do not understand, contact your nearest Shimaden dealer.

