Contents

[1] OUTLINE AND DISTINCTIVE FEATURES ... 3
[2] FRONT PANEL INFORMATION ... 3
[3] KEY BOARD OPERATION .. 4
[4] INITIALIZE BEFORE USING ... 5
 (1) Four Check Items in Block A ... 5
 1. Press the [FILE] key to call the top screen of Block A onto display.
 2. Call the screen shown on the right by the use of the [FILE] key.
 3. Press the [FILE] key to call the analog output signal screen onto display.
 4. Call the interface function screen by pressing the [FILE] key and operate by the use of the
 interface function.
 (2) Four Check Items in Block B ... 6
 1. Press the [FILE] key to call the top screen of the Block B onto display.
 2. Call the next screen "DI-1" by pressing the [FILE] key.
 3. Call the "DO2" event setting screen by the use of the [FILE] key.
 4. Call the "DO3" event setting screen by the use of the [FILE] key.
 (3) Confirmation necessary for the Three points 7
 1. Select °C or °F
 2. Is the measuring range as ordered by you?
 3. Select the unit of ramping time, minute or second.
 (4) Seven Check Items in Block C ... 7
 1. Selection by [FILE] key.
 2. Set scale range by [FILE] key.
 4. Call the scale over screen on display by [FILE] key.
 5. Call "POWER ON MODE" by [FILE] key.
 6. Call "TIME UNIT" by [FILE] key.
 7. Call "MEMORY INITIAL" by [FILE] key.

[5] SETTING OF PROGRAM PATTERNS ... 16
 (1) Set the Program Pattern (I). ... 16
 1. Call the "3) PROGRAM DATA PATTERN" (Pattern No. confirmation)
 2. Call the "P1 START SV" (Starting value)
 3. Call the "P1 GUA SOAK" (Guarantee soak)
 4. Call "P1 PTN END" (Ending step No.)
 5. Call the "P1 PTN RPT" (No. of repeat)
 6. Call the "P1 S1"
 (2) Set the Program Pattern (II). ... 16
 1. Call the "P1 SV: 0.0˚C" (Pattern No./Temperature/Time)
 2. Call the "P1-S1 PID No: 0" (Pattern No./PID values/Alarm values)
 3. Call the "P1-S1 TSI: [N]" (Pattern No./Time signal TS)

[6] Program Operation ... 25
 (1) Preparations for Operation.. 25
 1. Operating parameter screen by [FILE] key
2. Pattern No. & Step No. setting by \text{PLE} key
3. Link format setting by \text{PLE} key
4. Repeat No. & PV start execution
5. For advancing the program

(2) Start of Operation .. 26
1. To start the program (RUN)
2. To start auto-tuning (AT)
3. Confirmation on monitor screen
4. To stop auto-tuning (AT)
5. To stop the program (RST)

[7] SETTING AND OPERATION OF FIXED VALUE CONTROL .. 27
(1) Setting of Fixed Value Control .. 27
1. To set the temperature
2. To set PID values and ALARM values
(2) Operating the Fixed Value Control .. 27
1. To start fixed value control (FIX)
2. To execute auto-tuning (AT)
3. To stop auto-tuning during execution
4. To change from fixed value control (FIX) to manual operation (MAN)
5. To stop fixed value control (FIX)

[8] PROGRAM OPERATION BY EXTERNAL CONTROL .. 29
(1) Preparations for Switching to External Control .. 29
(2) How to Switch to External Control .. 29
(3) How to Start External Control .. 29

[9] LCD SCREEN DIAGRAM & KEY SEQUENCE .. 30
(1) LCD SCREEN DIAGRAM & KEY SEQUENCE .. 30
(2) (No.3) Program Data Screen Group & Key Sequence .. 32
(3) (No.4) Control Data Screen Group .. 34
(4) (No.6) Initial Data Screen Group .. 35

[10] TERMINAL ARRANGEMENT AND EXTERNAL VIEWS ... 36
(1) Terminals .. 36
(2) Mounting and Wiring .. 37
(3) Request (Anti-noise Measures) .. 38

b. STANDARD RANGE AND USER-PROGRAMMABLE SCALING .. 39
c. INITIAL VALUES .. 40

[12] MAINTENANCE AND TROUBLESHOOTING .. 41
1. Procedure of maintenance replacement and matters to be attended to .. 41
2. Causes of trouble and troubleshooting .. 41
3. Error codes, causes and remedies .. 42

[1] OUTLINE AND DISTINCTIVE FEATURES

The series FP21 programmable controller has a program capacity of 9 patterns of 9 steps. When linked, the capacity can be extended to $9 \times 9 = 81$ steps.

- Easy operation by menu driven on LCD screens
- Multiple inputs and multiple ranges for each group
- High accuracy: $\pm (0.1\% + 1 \text{ digit})$
- Interface function (RS232 or RS-422A) available by option

[2] FRONT PANEL INFORMATION

<table>
<thead>
<tr>
<th>Names</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names</td>
<td>Status Display</td>
</tr>
<tr>
<td>RUN</td>
<td>Lit during program run.</td>
</tr>
<tr>
<td>HLD</td>
<td>Lit during temporary stop of program.</td>
</tr>
<tr>
<td>ADV</td>
<td>Lit forcibly advancing to next step during program run.</td>
</tr>
<tr>
<td>GUA</td>
<td>Lit during guarantee soak.</td>
</tr>
<tr>
<td>COM</td>
<td>Lit during use of interface function.</td>
</tr>
<tr>
<td>EXT</td>
<td>Lit when external control is input.</td>
</tr>
<tr>
<td>TS1-4</td>
<td>Lit when time signal is output.</td>
</tr>
<tr>
<td>AL1</td>
<td>Lit when alarm AL1 is output.</td>
</tr>
<tr>
<td>AL2</td>
<td>Lit when alarm AL2 is output.</td>
</tr>
</tbody>
</table>

![Status indicators](image1)

- FIX: Lit during execution of fixed value control
- MAN: Lit during manual operation
- AT: Lit during auto-tuning
- LED display PTN...Pattern No.
- LED display STP...Step No.
- LCD screen display of parameters

![Keyboard](image2)

- RVS: Reverse key
- FUNC: Function key
- FILE: File key
- ITEM: Item key
- DOWN: Down key
- OSD: Shift key
- Up key
- ENT: Enter key

Functions of the Keys:
- RVS: Used together with other keys for reverse or limit operation.
- FUNC: Used to move from a screen group to another (Group Nos. 1-6).
- FILE: Used to move from a screen to another in the same screen group.
- ITEM: Used to move from a data No. to another in the same screen.
- DOWN: Used to decrease a value when data in number (in letters) is changed.
- OSD: Used to move from a figure to another of a number and to move from a parameter to another in the same screen.
- Up key: Used to increase a value when data in number (in letters) is changed.
- ENT: Used to register a changed data in number or letters or to move from a parameter to another in the same screen.
[3] KEY BOARD OPERATION

For keyboard operation, refer to the FP21 screen diagram on pages 28~30.

1. The (FUNC) key is used to move from the initial screen of a screen group to the initial screen of another group. *(Horizontal move)
 (There are Group Nos. 1 to 6.)
2. The (FILE) key is used to move from a screen to another downward in each screen group. *(Vertical move)
 When the (FILE) key is pressed after pressing the (RVS) key, screens are moved upward.
3. The (RVS) key does not function independently. When used in combination with another key, it functions in various ways.
 Whichever screen may be on display, it is possible to return to the initial screen of Group No.1 by pressing the (RVS) key and then the (FUNC) key.
4. The (ITEM) key is used to move crossways from Block A to Block B and Block C respectively in the No.3 program data screen group, the No.4 control data screen group, and No.6 initial data screen group.
 When the (RVS) key and the (ITEM) key are pressed, screens are moved the other way round, i.e., from Block C to Block B and to Block A crossways.
5. The (OPS) shift key is used to move the cursor from a figure to another of a number.

6. The (△) down and the (▽) up keys are used to decrease or increase a constant (numerical value).
 a. When the (RVS) key and then the (△) key are pressed, the minimum value allowed to be set in the screen is displayed for possible setting.
 b. When the (RVS) key and then the (▽) key are pressed, the maximum value allowed to be set in the screen is displayed for possible setting.
7. The (ENT) key is used to enter (register) a value.
 When the (ENT) key is pressed, "=" changes to "::" and the value is registered.
 a. The (ENT) key moves the cursor among data in the same screen.
 b. The cursor is moved in the same way as "a." above by pressing the (RVS) key and then the (OPS) key.
8. When the (RVS) key and then the (ENT) key are pressed, a value registered immediately before is copy-displayed, and it is registered by pressing the (ENT) key again.
 This procedure can be used to copy the deviation alarm, the time, and the time signal, etc., of a step to another step.

[Fig. 3]

- 4 -
[4] INITIALIZE BEFORE USING

Prior to using the FP21 programmable controller, desired settings should be made in it. This is called "initialization".

1. **Four Check Items in Block A**
 - To check Block A, press the key to call the top screen of Block A onto display.
 - (a) Will you use the PV filter which serves as a noise cutter?
 - (b) Will you compensate sensor errors?
 - (The compensation range is ±99.9˚C.)
 - For (a) and (b) above, values are set by the use of the or key and registered by pressing the key.

2. Call the screen shown on the right by the use of the key.
 - (a) Select direct or reverse action of control output.
 - (*) The initial value is R = reverse action.
 - (b) Set the cycle time in case the control output is contact output (Y) or SSR output (P).
 - (*) The initial values are 30s for contact output and 3s for SSR output.
 - Select values for (a) and (b) above by the use of the or key and register them by pressing the key.

3. Press the file key to call the analog output signal screen onto display.
 - (a) Which will you select, PV or SV type analog output signals?
 - (b) Will you set the higher or lower limit for the analog output signals (1)?
 - (c) Will you set the higher or lower limit for the analog output signals (2)?
 - Select for (a), (b) and (c) above by the use of the or key and register the selected values by pressing the key.

4. Call the interface function screen by pressing the key and operate by the use of the interface function.
 - Refer to the instruction manual of the interface function.

If your apparatus is without analog output, these screens are not displayed.

If your apparatus is without interface function, these screens are not displayed.
(2) Four Check Items in Block B

☐ In case Block B is not checked, press the [ITEM] key to move to the top screen of Block C.
☐ To check Block B,

1. Press the [ITEM] key to call the top screen of the Block B onto display.
 (a) Select the type (mode) of alarm actions.
 Ten types (modes) of alarm actions are available.
 Selection should be made with reference to page 12.
 Use the [▼] or [▲] key for mode selection and press the [ENT] key to register the selected mode.

 (b) Call the screen shown on the right by the use of the [FILE] key and select the sensitivity and standby or non-standby of the alarm action selected in (a) above.
 Sensitivity is variable between 0.1 and 5% of FS and its initial value is 0.2%. [Y] stands for yes, meaning standby, while [N] stands for no, i.e., non-standby.
 Select values by the use of the [▼] or [▲] key and register them by the [ENT] key.

 (c) The pattern No., the step No. and the temperature °C or °F at which the alarm is activated are to be set in the “control screen group”.

2. Call the next screen "DI-1" by pressing the [FILE] key.
 (a) This screen is used for "external control operation" in the operation mode [EXT].

3. Call the "DO2" event setting screen by the use of the [FILE] key.
 (a) Three output signals can be selected from the 8 types of events listed in the table below. (See page 13.)
 (b) These are open collector signals from the 24-pin connector at the back.

4. Call the "DO3" event setting screen by the use of the [FILE] key.
 (a) Three output signals can be selected from the 8 types of events listed in the table below. (See page 13.)
 (b) These are contact outputs from terminals at the back of the apparatus.

The eight event outputs mentioned above are:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | TS1 | Time Signal 1 | 5 | SO | In case of scale over output = "ON"
| 2 | TS2 | Time Signal 2 | 6 | RUN | Program in execution = "ON"
| 3 | TS3 | Time Signal 3 | 7 | END | Program stopped = "ON"
| 4 | TS4 | Time Signal 4 | 8 | EXT | External control in operation = "ON"

The pattern Nos. and step Nos. in which the event signals selected in 3 and 4 above are output and their values, are to be set in the No.3 program data screen group.
(3) Confirmation necessary for the Three points

- Even when Block C is not checked, the following three points need to be confirmed.
 1. Select 'C' or 'F'. Initial value: 'C
 Select Pt or JPt in the case of Pt 100Ω input (RTD). Initial value: Pt
 2. Is the measuring range as ordered by you? Initial value:
 T/C : 0-800˚C
 Pt : 0-200˚C
 mV : 0-10mV
 V : 0-10V
 mA : 4-20mA
 3. Select the unit of ramping time, minute or second. Initial value: Minute

- To check Block C,
 Press the [ITEM] key, and the top screen of Block C is on display.
 This is a monitor screen to confirm:
 (a) Type of control output signal (OUT)
 (b) Type of analog output signals (T1, T2)
 (c) Type of interface functions

(4) Seven Check Items in Block C

1. Selection by [FILE] key
 (a) Select either 'C' or 'F'. Initial value: 'C
 (b) Select either Pt or JPt in case of RTD input.
 Use the [] or [] key for the selection and register it by pressing
 the [ENT] key. Initial value: Pt

2. Set scale range by [FILE] key
 (a) Set the scale range.
 Use the [] or [] key for setting and the [ENT] key for entry.

3. V/C input by [FILE] key
 This screen is used in case of V/C input.
 (a) Carry out scaling.
 (b) Press the [FILE] key to call the screen for deciding the position of the
 decimal point.
 Use the [] or [] key for setting and the [ENT] key for entry.

4. Call the scale over screen on display by [FILE] key
 When an output signal is scale over, will you select (a) to stop (RST) the
 signal, i.e., 0%, or (b) to hold and output in a range from 0 to 100%?
 Use the [] or [] key for selection and the [ENT] key for entry.
5. Call “POWER ON MODE” by [FLE] key

This is to select the mode in which the program starts when power is applied. Five modes are available for selection by the use of the [△] or [△] key and entry by the [ENT] key. The following table and Fig.5 explain the relation between the types of power supply and the modes in which the program is executed.

Examples A show the courses of action:
Power ON → Start of program → Power OFF in the middle → Power ON again → End of program

Examples B show the courses of action:
Power ON → Start of program → End of program → Power OFF → Power ON again → Start of program → End of program

<table>
<thead>
<tr>
<th>KIND OF POWER SUPPLY</th>
<th>USE</th>
<th>POWER ON IN OPERATION MODE START</th>
<th>WHILE POWER IS OFF</th>
<th>POWER ON AGAIN</th>
<th>SCREEN DISPLAY WITH POWER ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NORMAL</td>
<td>Suitable when the FP21 is used alone.</td>
<td>RST → RST</td>
<td>RUN → RUN</td>
<td>MAN → MAN</td>
<td>None</td>
</tr>
<tr>
<td>2 ALL RST</td>
<td>Suitable when the FP21 is used alone.</td>
<td>RST → RST</td>
<td>RUN → RUN</td>
<td>MAN → RST</td>
<td>– ALL RST ON –</td>
</tr>
<tr>
<td>3 AUTO RUN</td>
<td>Suitable when the FP21 is interlocked with a sequencer, calendar timer, etc.</td>
<td>RST → RUN</td>
<td>RUN → RST</td>
<td>MAN → MAN</td>
<td>– AUTO RUN ON –</td>
</tr>
<tr>
<td>4 GUA RUN</td>
<td>Suitable when the FP21 is interlocked with a sequencer, calendar timer, etc.</td>
<td>RST → RST</td>
<td>RUN → RUN</td>
<td>MAN → MAN</td>
<td>– GUA RUN ON –</td>
</tr>
<tr>
<td>5 AUTO & GUA</td>
<td>Suitable when the FP21 is interlocked with a sequencer, calendar timer, etc.</td>
<td>RST → RUN</td>
<td>RUN → RUN</td>
<td>MAN → MAN</td>
<td>– AUTO & GUA ON –</td>
</tr>
</tbody>
</table>
1) NORMAL
Example A

```
ON     OFF

Power off
→ t
Select RUN.
```

Example B

```
ON     OFF

Start RUN.
```

2) ALL RST
Example A

```
ON     OFF

Power off
→ t
Select RUN.
```

Example B

```
ON     OFF

Not to start automatically.
RUN should be selected.
```

3) AUTO RUN
Example A

```
ON     OFF

Power off
→ t
To start automatically
```

Example B

```
ON     OFF

To start automatically.
```

[Fig.5]
4) GUA RUN
Example A

- GUA RUN ON – " on display.

ON

OFF

Power off
→ t
Select RUN.

Power on
→ To restart automatically.

Example B

“ – GUA RUN ON – “ on display.
→ Power on next day

ON

OFF

End

ON

OFF

Not to start automatically. RUN should be selected.

Select RUN.

Power on
→ t
To restart automatically.

To restart automatically.

5) AUTO & GUA
Example A

“ – AUT & GUA ON – “ on display.

ON

OFF

Power off
→ t
To start automatically

Power on
→ To restart automatically.

Example B

“ – AUT & GUA ON – “ on display.
→ Power on next day

ON

OFF

End

ON

OFF

To start automatically.

To start automatically.
6. Call "TIME UNIT" by [FILE] key

Use the [↑] or [↓] key for selection and the [ENT] key for entry.

(a) Select "min" or "sec" as the time unit for ramping.
(b) Next, select the computing circuit of PID from the following 3 types.

For temperature control, the initial value, i.e., "SERIES" is appropriate.

1. SERIES The AT circuit of the FP21 series has been adjusted for optimum control by the SERIES PID circuit.
2. PARA To be used for special control systems.
3. D_PARA To be preferred for special control systems, and particularly those which require high-speed operation.

7. Call "MEMORY INITIAL" by [FILE] key

Select whether to initialize data or not.
Select 0, 1 or 2 by the use of the [↑] or [↓] key and press the [ENT] key.

a. –0 -- not to initialize
b. –1 -- to initialize partially (limited to data stored by the user)
c. –2 -- to initialize all data
ALARM ACTIONS (The No. 6 initialization screen group)

<1> Call the alarm mode screen of the No.6 initialization screen group on display and select the alarm modes.

6) INITIAL DATA

ALARM AL1: [LD1]
MODE AL2: [HD1]

FILE

<2> The following 10 alarm modes are available for selection.

A. Absolute Value Alarm Group [Fig. 6]

<table>
<thead>
<tr>
<th></th>
<th>LL 1</th>
<th>HL 1</th>
<th>LL 2</th>
<th>HL 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>21°C</td>
<td></td>
<td></td>
<td>21°C</td>
<td></td>
</tr>
</tbody>
</table>

① and ② are for setting a temperature at which the relay contact turns ON.

The above are absolute value settings.

B. Absolute Deviation Alarm Group

<table>
<thead>
<tr>
<th></th>
<th>AD 1</th>
<th>AD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>21°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV 23°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

② and ⑥ are for setting a temperature at which the relay contact turns OFF.

⑤ and ⑦, using one relay, operate both high and low limits of alarm output.

Example: The temperature is set at 23°C and the deviation at 2°C.

In the case of ⑧:
The temperature rises and upon reaching 21°C, the relay contact is turned ON. A further rise to 25°C + sensitivity turns the relay contact OFF. When the temperature lowers to 25°C, the relay contact is turned ON and a further fall to 21°C + sensitivity turns the relay contact OFF.
C. Deviation Alarm Group

<table>
<thead>
<tr>
<th>⊙ LD 1</th>
<th>⊙ HD 1</th>
<th>⊙ LD 2</th>
<th>⊙ HD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>21 (−2)</td>
<td>SV 23°C</td>
<td>23°C</td>
<td>25 (+2)</td>
</tr>
</tbody>
</table>

⊙, ◎, ⊙ and ⊙ are examples in which the temperature is set at 23°C (SV) and the lower limit and the higher limit are set −2°C and +2°C respectively.

AL1 SENS: 0.2%
STBY: [Y]

AL2 SENS: 0.2%
STBY: [N]

<3> Then, set the sensitivity of the alarm actions and select either non-standby or standby.
⊙ Sensitivity adjustment (Sensitivity)
0.1—5% (FS)

⊙ Selection of standby or non-standby.
N---- NO
Y---- YES

<4> Numerical values of alarm functioning points are set in the No. 4 control screen group.

4) CONTROL DATA
(PID, ALM No.) :
ALARM 1 [LD1]
AL1 −5.0°C
ALARM 1 [LD1]
AL2 −5.0°C

FP21 programmable controller

The capacity of the alarm output relay contacts is 240V AC, 2.0A resistive load.
Eight Event Signals (The No. 6 initialization screen group) [Fig. 7]

<1> Three of the eight event signals can be selected and set as open collector signals.

<2> Any three of the eight events can be selected and set as contact signals.
During program operation, six out of the following eight types can be selected and set to output as signals.

<table>
<thead>
<tr>
<th>EIGHT EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
| 7 | END | The output is activated
1. when program execution ends.
2. when CFM operation ends (about 1 second).
3. when program is stopped by RST. |
| 8 | EXT | The output is activated when EXT (external control input) is selected from the operation modes. |

Call the No. 3 program data screen group.
The pattern No. and the step No. in which a time signal (TS1, TS2, TS3 or TS4) is output are set in this No. 3 program data screen group.
[5] SETTING OF PROGRAM PATTERNS

(1) Set the Program Pattern (I).
Prior to setting the temperature, time, PID and alarm of the program pattern, the following 5 items have to be checked.

1. By pressing the [FNC] key, call the initial screen of the program data screen group to confirm that the pattern No. is "1".

The FP21 controller has a capacity of 9 patterns.
Use the [၁] or [၂] key to set a number and register it by pressing the [ENT] key.

2. Call by using the [FILE] key and set the starting value of the program.
In this example, it is set at 0˚C.

3. Call with the [FILE] key.
Guarantee soak can be set by time or temperature.
In this example, it is not set.

4. Call with the [FILE] key.
Set the ending step No. of Pattern No.1.
In this example, Step No. 9 is set.

5. Next, the number of repeats is set. In this example "0" is set, which means no repeat is required.
Each of the above values is set by means of the [၁] or [၂] key and is registered by pressing the [ENT] key.

6. Call with the [FILE] key.
This is a monitor screen to confirm the values set for the program pattern.

(2) Set the Program Pattern (II)

1. Call the "P1 SV: 0.0˚C" (Pattern No./Temperature/Time)
 a. Call with the [FILE] key.

Use the [NEXT] key to call each step.
Now, data to execute the program are set in this screen.
In this example, set the program pattern shown in Fig. 8 in order.

<table>
<thead>
<tr>
<th>PROGRAM DATA</th>
<th>INITIAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>START SV</td>
<td>0</td>
</tr>
<tr>
<td>GUA SOAK</td>
<td>00</td>
</tr>
<tr>
<td>PTN END</td>
<td>9</td>
</tr>
<tr>
<td>PTN RPT</td>
<td>0</td>
</tr>
</tbody>
</table>

[Fig. 8]
b. Set the temperature and time of each step.

Start setting with Step No.1.
Set SV at 200°C by the use of the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and register it with the [ENT] key.

STEP 1

Move the cursor to "TIME" by the use of the [ENT] key.
Set the time at 1h by the use of the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and register it by pressing the [ENT] key.

Use the [ITEM] key to change to the Step 2 screen.
Set SV at 200°C by the use of the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and register it with the [ENT] key.

STEP 2

Move the cursor to "TIME" with the [ENT] key and set it at 2h by using the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and enter it with the [ENT] key.

Use the [ITEM] key to change to the Step 3 screen.
Set the temperature and time with the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key in the same manner as above.

STEP 3

Use the [ITEM] key to change to the Step 9 screen.
Set SV at 0°C with of the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and register it with the [ENT] key.

Move the cursor to "TIME" by the use of the [ENT] key.
Set it at 2h with the \([\text{▼}, \text{▼▼}, \text{▼▼▼}]\) or \([\text{▲}]\) key and register it with the [ENT] key.

STEP 9

The procedure to set the temperature and time of each step of Pattern No.1 has been completed.

c. Confirm that the pattern has been set as intended.
Press the [FILE] key 9 times and the following screen and similar ones are on display successively.
(See (5) on page 14.)

Press the [FILE] key, and is on display.
2. Call the "P1-S1 PID No: 0" (Pattern No./PID values/Alarm values)

A. Start with PID values.

 Call P1-S1 PID No:0 by pressing the RUN key.

a. This screen is not used in case auto-tuning (AT) is executed.
b. This screen is used in case auto-tuning (AT) is executed and PID values during the AT operation need to be stored for each step.
c. This screen is used in case PID values are set for each step without auto-tuning (AT).
d. Procedure for "b." and "c." above.
 Prior to setting PID values, the PID No. to be activated in each of the steps S1~S9 is set as shown in Fig 9.

For example, PID No.1 in step S1
PID No.2 in step S2
PID No.9 in step S9

For example, PID No.1 in step S1
PID No.2 in step S2
PID No.9 in step S9

When the above procedure is completed, the PID values automatically obtained in each step by the auto-tuning function during the execution of auto-tuning (AT) are stored.

4) CONTROL DATA
 (PID, ALM No.) : 1

They are stored in the PID DATA screens in the No.4 control data screen group.

e. Press the RVS key and then the END key to return to the initial screen.

Set PID values for each step of Pattern No.1, referring to Fig.10.

<table>
<thead>
<tr>
<th>PATTERN No.1</th>
<th>TIME</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID_1 P : %</td>
<td></td>
<td>1H</td>
<td>2H</td>
<td>3H</td>
<td>4H</td>
<td>5H</td>
<td>4H</td>
<td>3H</td>
<td>2H</td>
<td>2H</td>
<td></td>
</tr>
<tr>
<td>L : S</td>
<td>300</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>D : S</td>
<td>3</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>PID_1 OH : %</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>(OUTPUT LIMITER) OL : %</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

[Fig.10]
f. Press the [FNC] key three times to call the No.4 control data screen group and display the following screen by the use of the [FLE] key.

From this screen group, call the following screen.

![Control Data Screen](image)

1. Call the Step No._ by the use of the [ITEM] key (from PID1 to 9).
2. Select the proportional band value (P) by the use of the \(\Delta \) or \(\nabla \) key and register it with the [ENT] key.
 - Move the cursor to "P" with the [ENT] key.
3. Select the integral time "I" by the use of the \(\Delta \) or \(\nabla \) key and register it with the [ENT] key.
 - Move the cursor to "I" with the [ENT] key.
4. Select the derivative time "D" by the use of the \(\Delta \) or \(\nabla \) key and register it with the [ENT] key.

* In case the program is executed by auto-tuning, PID values need not be set.

![PID Settings](image)

Upon completion of setting the PID values in Step No.1~9 as described in Fig.10, make sure to return to Step No.1 by use of the [ITEM] key.

g. Next, call the output limiter screen with the [FLE] key.

![Output Limiter Screen](image)

This is not necessary if the output is not restricted by a higher or lower limit.

When limits are required, values are set as follows.

1. Call a step No. (PID No.1~9) by the use of the [ITEM] key.
2. Select the higher limit output value by the use of the \(\Delta \) or \(\nabla \) key and register it with the [ENT] key.
3. Select the lower limit output value by the use of the \(\Delta \) or \(\nabla \) key and register it with the [ENT] key.

When the output limit values in each of Steps 1~9 have been set as described in 1~3 above, make sure to return to Step No.1 by use of the [ITEM] key.
B. Next, alarm values are to be set.

Call 3) PROGRAM DATA on display by pressing the [RVS] key and then the [FUNC] key three times, and move to P1-S1 PID No:1 by the use of the [ITEM] key.

a. This screen is not used in case alarm actions are not required.
b. For the selection of the alarm mode, refer to page 12.
c. Prior to setting numerical values to activate the alarm function, the Alarm No. to be activated in each of Step Nos.1~9 is set as shown in Fig.11.

For example, ALARM No.1 in step S1
ALARM No.2 in step S2
ALARM No.9 in step S9

P1–S1 PID No:1 ALARM No:1

Change to Step No.2 with the [ITEM] key.
P1–S2 PID No:2 ALARM No:2

Change to Step No.9 with the [ITEM] key.
P1–S9 PID No:9 ALARM No:9

• Select Alarm No.1~9 by the use of the [△] or [□] key and register it with the [ITEM] key.
• Use the [ITEM] key to change from Step S1 to the subsequent steps.

Numerical values for activating the alarm function are selected and set in the No.4 control data screen group.

d. Press the [RVS] key and then the [FUNC] key to return to the initial screen: __ __

Set the alarm action points in each step of Pattern No.1, referring to the example shown in Fig.12.
e. Press the [FUNC] key three times to call the No.4 control data screen group. Then, press the [FLE] key three times to call the following screen onto display.

Starting with the [ALT] screen....

① Call the Step No._ by means of the [ITEM] key (ALARM 1–9).
② The screen shows the alarm mode.
 If you want to change it, see page 12.
③ Press the [V] or [A] key to select the value at which the alarm is activated and register it with the [ENT] key.

Next comes the [AL2] screen....

④ Press the [FLE] key to move to the [AL2] screen.
 Carry out the selection and entry as described in ①, ② and ③ above.

f. Now, set numerical values of the alarm actually, referring to Fig.12.

To begin with, the higher limit deviation alarm (HD1) is set in the [ALT] alarm screen and the lower limit deviation alarm (LD1) in the [AL2] screen as follows.

Alarm mode

Use the [V] or [A] key for selection and the [ENT] key for entry.

Select higher limit deviation alarm values in Step Nos.1–9 with the above procedure.

Alarm mode

Use the [V] or [A] key for selection and the [ENT] key for entry.

Select lower limit deviation alarm values in Step Nos.1–9 with the above procedure.
3. Call the "P1-S1 TSI: [N]" (Pattern No./Time signal TS)

Press the [RVS] key and then the [FUNC] key to return to the initial screen of the monitor screen group.

a. Fig.13 shows an example of setting time signals for the respective steps of Pattern No.1.

<table>
<thead>
<tr>
<th>TIME SIGNAL TS1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>START TIME ON</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>STOP TIME OFF</td>
<td>0H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME SIGNAL TS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME SIGNAL TS3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME SIGNAL TS4</th>
<th>1.5H</th>
<th>1.5H</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>START TIME ON</td>
<td>1.5H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP TIME OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then, press the [FUNC] key twice to move to the No.3 program data screen group and call the following screen by the use of the [FILE] key.

1) Call the Step No. by the use of the [ITEM] key (S1–9).
2) Select TS1, TS2, TS3, or TS4 as the time signal by means of the [FILE] key.
3) Select "Yes" or "No" to the use of time signal by pressing the [▼] or [▲] key and register it with the [ENT] key.
4) Set the starting time (ON time) of the time signal by the use of the [▼] or [▲] key and register it with the [ENT] key.
5) Set the stop time of the time signal (OFF time) by the use of the [▼] or [▲] key and register it with the [ENT] key.
b. Set the time signals in numerical values.
Use the TS1~TS4 examples shown in Fig.13.

① In step S1, TS1: [N], which means no time signal is set.
N: No-Not to be set.
Y: Yes-To be set.

② Use the [ITEM] key to change to S2.
Set [Y] by the use of the [△] or [▽] key and register it with the [ENT] key.
Move the cursor by the use of the [ENT] key and set the start time of TS1 at 00h00m and the stop time at 02h00m by the use of the [△] or [▽] key and register them with the [ENT] key.

The time signal functions as follows.

[Fig.14]

③ Change to S3 by the use of the [FILE] key. Then, move to TS4 by the use of the [ITEM] key.
Press the [△] or [▽] key to set [Y] and register it with the [ENT] key and press the [ENT] key again.
Set the start time of TS4 at 01h30m and the stop time at 01h30m by the use of the [△] or [▽] key and register them with the [ENT] key.

The time signal functions as follows.

[Fig.15]

The time signals have now been set.
c. Activation of time signals (TS1–TS4).

① Even when [Y] has been set for the time signal TS1, it is not activated if the starting time is "0".

② When [N] has been set for the time signal TS1, it is not activated even if the times are set.

③ When [Y] is set for the time signal TS1 and the starting and stop times are set at 30m and 00m respectively, it is activated for 1 second at the starting time.

④ When [Y] is set for the time signal TS2 and both the start and stop times are set at 00m, it is activated for 1 second at the starting point of the step.

[Fig. 16]

When the action time (□) of the time signal in a step overlaps that (□) of the following step as seen in ④, ⑦ and ⑧ in Fig. 16, its actual action time is as shown by (□)
[6] Program Operation

(1) Preparations for Operation

The execution parameter screen group comprises screens for operating the FP21 programmable controller by starting, suspending, stopping, etc.

1. Press the [FUNC] key to call the operating parameter screen, in which an execution parameter is called.

In this space a parameter (in three letters) selected from 1~8 by the use of the [↑] or [↓] key is displayed.

When a parameter has been called, press the [ENT] key to execute it.
Prior to starting program operation, check the following.

2. Press the [FILE] key.
 a. Which pattern No. is the program started with?
 b. Which step No. is the program started with?
 ◎ Here, the starting pattern and step Nos. are both "1".

3. Press the [FILE] key to set the link format.
 a. The order of linking should be decided.
 ◎ In this example, no link is required and so setting is not necessary.

4. Press the [FILE] key.
 a. In case the link format is set, do you want to repeat the linked steps?
 If so, how many times? No repeat = 0
 b. Do you want to execute PV START?
 Select Y for Yes or N for No. by the use of the [↑] or [↓] key
 and register it with the [ENT] key.
 ◎ In this example, [N] is registered.

5. For advancing the program, press the [FILE] key, and select either of the following.
 a. Advance by STEP

 b. Advance by TIME
 If TIME is selected, set the time by pressing the [↑] or [↓] key
 and register it with the [ENT] key.
 The program can be advanced by the time set.
(2) Start of Operation

1. To start (RUN) the program, call [RUN] by the use of the \(\Box \) or \(\square \) key and press the [ENT] key to execute.
 The RUN lamp is lit on the front panel.

2. To start auto-tuning (AT), call [AT] by the use of the \(\Box \) or \(\square \) key and press the [ENT] key to execute.
 The AT lamp is lit on the front panel.

3. Upon starting (RUN) the program, call the No.1 monitor screen group to check the pattern.
 To return to the monitor screen group, press the [FNC] key and then the [RVS] key.
 Use the [FILE] key to check the pattern.

4. To stop auto-tuning during execution, use the [FNC] key to call. Call [AT] here.

5. To stop (RST) the program, use the [FNC] key to call this. Call [RST] here.
 Upon pressing the [FNC] key, the AT lamp goes out and auto-tuning is stopped.

 When the program is stopped temporarily or terminated, the LCD display changes to the following.

 To start (RUN) again, press the [FNC] key and the [RUN] key, and then the [FNC] key. The display returns to the No.2 execution parameter screen group.
[7] SETTING AND OPERATION OF FIXED VALUE CONTROL

(1) Setting of Temperature, PID Values and Alarm Values for Fixed Value Control.

1. To set the temperature, call the operation mode screen by the use of the \textbf{[RUN]} key and the FIX screen by the use of the \textbf{[PLE]} key. Set the temperature at, for example, 300˚C with the \textbf{[V]} or \textbf{[A]} key and register it with the \textbf{[ENT]} key.

2. To set PID values and ALARM values,
 (1) The PID No. and ALARM No. to store these data should be decided. Assuming that No.1 is selected for both, set them at 1 with the \textbf{[V]} or \textbf{[A]} key and register them with the \textbf{[ENT]} key.
 (2) Next, set PID and ALARM values in the control data screen group.
 Return to the initial screen by pressing the \textbf{[FILE]} key and then the \textbf{[FUNC]} key and press \textbf{[RVS]} key again to move to the \textbf{[EXEC]} key. Set PID values with the \textbf{[V]} or \textbf{[A]} key and register them with the \textbf{[ENT]} key.
 In case auto-tuning is carried out, these need not be set.

 (3) Call the ALARM screen with the \textbf{[FILE]} key and set the value for AL1:

 (4) Next, change the screen to AL2: with the \textbf{[FILE]} key and set the value.

 (5) In the above, the alarm mode and sensitivity are assumed to have already been set in the initial data screen group described on page 12. To change them or some other item, refer to page 12.

(2) Start of Fixed Value Control Operation

1. To start fixed value control (FIX), call the execution parameter screen by the use of the \textbf{[RUN]} key.
 Call \textbf{[FIX]} by the use of the \textbf{[V]} or \textbf{[A]} key and press the \textbf{[ENT]} key. The FIX lamp is lit on the front panel.

2. To execute auto-tuning (AT), call \textbf{[AT]} by the use of the \textbf{[V]} or \textbf{[A]} key and press the \textbf{[ENT]} key. The AT lamp is lit on the front panel.
 After starting fixed value control (FIX), press the \textbf{[FILE]} key and the \textbf{[FUNC]} key to return to the monitor screen.

3. To stop auto-tuning during execution, bring onto display by the use of the \textbf{[FILE]} key to call [AT] or [A] key to call [AT] and press the \textbf{[ENT]} key. The AT lamp on the front panel goes out and the AT operation is stopped.
4. To change from fixed value control (FIX) to manual operation (MAN),

① Display this screen by the use of the \[FUNC\] key to call [MAN]

Use the \[\downarrow\] or \[\uparrow\] key to call [MAN]. Press the [ENT] key, and the MAN lamp lights.

② Manual operation is carried out through the monitor screen.

Call by pressing the \[RVS\] key and the \[FUNC\] key.

Adjust the output manually, using the \[\downarrow\] , \[\downarrow\] and \[\uparrow\] keys.

③ To return from manual control to fixed value control (FIX):

Display this screen by the use of the \[FUNC\] key to call [FIX].

Use the \[\downarrow\] or \[\uparrow\] key to call [FIX] and press the [ENT] key to start (FIX).

5. To stop fixed value control (FIX):

Display by the use of the \[FUNC\] key to call [RST].

Use the \[\downarrow\] or \[\uparrow\] key to call [RST]. Press the [ENT] key, and the [FIX] lamp on the front panel goes out and fixed value control (FIX) is stopped.

When fixed value control (FIX) is stopped, the LCD display changes to the following.

\[\text{– MESSAGE –}\]
\# RET FIX BRK 1

To resume fixed value control (FIX), press the \[RVS\] key and the \[FUNC\] key and repeat the above procedure from (1) on page 25.
[8] PROGRAM OPERATION BY EXTERNAL CONTROL

(1) Before calling the operation mode screen,
 a. Set the program pattern.
 1) Set the temperature of each step.
 2) Set the PID values of each step. (Not necessary in case of auto-tuning.)
 3) Set the alarm values of each step. (Not necessary in case of auto-tuning.)
 3) Set a time signal, etc., for each step.

 For the above setting, refer to pages 14 to 22.

 b. For external control, provide external switches and wire them as follows.

 STATUS OUTPUT

 EXTERNAL CONTACT INPUT

 COM 24 12
 GUA 23 11
 ADV 22 10
 HLD 21 9
 RAN/RST 20 8
 FIX 19 7
 MAN 18 6
 OUT 17 5
 OUT 16 4
 OUT 15 3
 OUT 14 2
 MAN 17 1

 (2) External Control

 To switch to external control, display \[\text{OUT} \quad 0.0\% \] by the use of the [RUN] key and then call \[\text{OPERATION MODE} : (\text{LOC}) \] by the use of the [POS] key and the [ITEM] key.

 Call \(\text{EXT} \) with the \(\text{V} \) or \(\text{A} \) key and press the [ENT] key.

 (3) To start external control, select the program pattern No. by the use of the BIN code switches.

 When the external RUN/STOP switch is turned ON, the program is started.

 Note: Regarding switches for the ADV and AT, use the push-button switches as illustrated in Fig.17.
[9] LCD SCREEN DIAGRAM & KEY SEQUENCE

1) FUNCTION
 - AUTO RUN ON -
 OUT 50.0%

2) EXEC KEY: [RUN]
 (RST)
 - FILE -
 START PTN No. : 9
 STP No. : 9
 - FILE -
 LINK FORMAT
 : [123456789]
 - FILE -
 LINK EXEC. : 999
 PV START : [N]

3) PROGRAM DATA
 PATTERN No.: 1
 (NO. 3) (Page 32, 33)
(1) Whichever screen may be on display, you can move to the initial screen (ENTRY AVLBL) of the monitor screen group by pressing the [RVS] and [FUNC] keys.

(2) When any screen other than the initial one (ENTRY AVLBL) of each screen group is on display, you can call the initial screen of the same group by pressing the [RVS] key.

(3) By pressing the [FILE] key and the [ITEM] key respectively after pressing the [RVS] key, you can call a screen opposite to the direction of the [FILE] or [ITEM] key.

(4) The [RVS] and [FUNC] keys are used to move the cursor from a parameter to another in the same screen. The [FILE] key is used to move from a figure to another of a number.

(5) The [Y] and [N] keys are used to change data in number or in letter(s). When "=" is displayed, the set data is registered by pressing the [ENT] key.

(6) When the [ENT] key is pressed with ":" on display, the cursor can be moved from a parameter to another in the same way as the [RVS] and [FUNC] keys are pressed, and changed data is registered when the [ENT] key is pressed with "=" on display.

(7) Pressing the [RVS] and [Y] keys displays the lower limit value possible to be set.

(8) Pressing the [RVS] and [N] keys displays the higher limit value possible to be set.

(9) Pressing the [RVS] and [ENT] keys calls back data set immediately before if data is a numerical value.

(10) When the [RVS] key is pressed, [□] is displayed on the lower left side of the screen. If no key is pressed subsequently, the reverse mode is automatically released in 5 seconds. When the [RVS] key is pressed while [□] is on display, [□] goes out.
3) PROGRAM DATA

PATTERN NO. : 1

FILE

P1 START SV
: 200. 0°C

FILE

P1 GUA SOAK
: 0. 0°C, : 99h59m

FILE

P1 PTN END
: 9

PTN RPT
: 9999

FILE

P1 S1

FILE

P1 SV : 200. 0°C

FILE

S9 TIME : 99h59m

FILE

P1—S9 PID No : 9

ALARM No : 9

FILE

P1—S9 TS1 : [N]
: 99h59m/: 99h59m

FILE

P1—S9 TS2 : [N]
: 99h59m/: 99h59m

FILE

P1—S9 TS3 : [N]
: 99h59m/: 99h59m

FILE

P1—S9 TS4 : [N]
: 99h59m/: 99h59m

FILE

P1 SV : 200. 0°C

FILE

S81 TIME : 99h59m

FILE

P1—S81 PID No : 9

ALARM No : 9

FILE

P1—S81 TS4 : [N]
: 99h59m/: 99h59m

(1) In LIMIT MODE PTN [N], indication is of nine patterns and nine steps.
In LIMIT MODE PTN [Y], indication is of one pattern and 81 steps.
(2) If PATTERN No._ is set on the initial screen () upon [N], the screen moves to the initial screen () of the pattern No. (P _) set.
(3) If STEP No._ is set on the initial screen () upon [Y], the screen moves to the initial screen (SV, TIME) of the step No. (P1-S_) set.

Indicated upon LIMIT MODE [Y]
Not indicated upon LIMIT MODE [Y]
Control Data Screen Group (No.4)

Moves to the initial screen set with No._.

4) CONTROL DATA
(PID, ALM No.): 1

FILE

PID_1 P: 999.9%
I: 6000s, D: 3600s

FILE

PID_1 OH: 110.0%
OL: -10.0%

FILE

ALARM_1 (HL1)
AL1 : 100.0°C

FILE

ALARM_1 (LL1)
AL2 : 100.0°C

FILE

PID_9 P: 999.9%
I: 3000s, D: 1200s

FILE

PID_9 OH: 100.0%
OL: 0.0%

FILE

ALARM_9 (HL1)
AL1 : 100.0°C

FILE

ALARM_9 (LL1)
AL2 : 50.0°C

FILE
(1) The screen enclosed in is shown when supplementary analog outputs (option) are added.
(2) The screen enclosed in is shown when the communication function (option) is installed.
(3) The screen enclosed in is shown when DC input is selected.
(4) INITIAL DATA Screens

The initial data cannot be changed at the time of DISPLAY ONLY. The initial data can be changed at the time of ENTRY AVLBL.
[10] TERMINAL ARRANGEMENT AND EXTERNAL VIEWS

(1) Terminals

Analog Output (option)
0~10V DC/Maximum load current: 2mA max.
0~10mV DC/Output resistance: 10Ω
4~20mA DC/Load resistance: 500Ω max.

Voltage/Current Input
Voltage input resistance: 500kΩ min
Current input resistance: 250Ω

Voltage/Current Input
Voltage input resistance: 500kΩ min
Current input resistance: 250Ω

Contact Output
Capacity:
240V AC, 2.5A/resistive load
240V AC, 1.0A/inductive load

Relay Contact Output
Capacity:
240V AC, 2.5A/resistive load
240V AC, 1.0A/inductive load

Voltage Output: 0~10V DC, load current 2mA max.
SSR Output: 15V DC, 20mA max.
Current Output: 4~20mA DC, load resistance 600Ω max.

Ground

Status Output	External Contact Input/Output (24-pin)	External Contact Input
OUTPUT | **INPUT** | Non-Voltage Contact: Max 2mA Max 5V DC
24 | DO-COM | When AT selected
25 | DO17 (GUA) | (RUN) DI18
26 | DO16 (ADV) | (HLD) DI17
27 | DO15 (HLD) | (ADV) DI16
28 | DO14 (RUN or RST) | (SEL16 or AT) DI15
29 | DO13 (FIX) | (SEL8) DI14**
30 | DO12 (MAN) | (SEL4) DI13**
31 | DO11 (AT) | (SEL2) DI12**
32 | DO23* | (SEL1) DI11**
33 | DO22* | |
34 | DO21* | |

Open Collector Output
Max 5mA
Max 24V DC
On Voltage ≤ 0.6V

Open Collector Output (Darlington)
Max 5mA
Max 24V DC
On Voltage ≤ 1.5V

* On Terminals D021, D022, D023, D031, D032, D033, only one each Status Signal comes out selected from TS1, TS2, TS3, TS4, SO, RU N, END, EXT
** SEL1, SEL2, SEL4, SEL8 (SEL16) BIN Code Input
(2) Mounting and Wiring

1. Place of Installation
 Choose a place in a desirable environment. The following conditions are required:
 1) There is no inflammable or corrosive gas, soot or dust to impair insulation.
 2) The ambient temperature is between –10°C and +50°C.
 3) The ambient humidity does not exceed 90%RH and no dew condensation occurs.
 4) The apparatus is not subjected to shocks and strong vibration.
 5) There is no strong electric circuit in the surrounding areas nor anything which tends to cause induced fault.
 6) There is no exposure to direct sunlight or drops of water.

2. Mounting
 1) Cut out a hole in accordance with following cutout drawings. Then mount the apparatus by pressing it firmly through
 the cutout hole from the front of the panel.
 2) Select the thickness of the mounting panel between 1.0 and 3.5mm.

3. Exterior Measure and Cutout Drawings

4. Wiring
 1) Use the designated compensating conductor in case of thermocouple input.
 2) Use lead wire of low resistance and without difference in resistance between 3 wires in case of RTD input.
 3) For power supply and its wiring, use wire or cable which is equivalent to or above the 600V vinyl-insulated wire
 (JIS C3307). Use a noise filter in the power source as needed.
 4) Ground the earth terminal through 2mm² or thicker wire and with an earthing resistance below 100Ω.
 5) Take care to prevent noise in wiring input circuits in particular.
 a) Wire input circuits away from power and earthing cables.
 b) The use of shielded cable may effectively prevent noise caused by static induction. If necessary, connect shielded
 cables to the earth terminal of the apparatus. (Two-point earthing must be avoided.)
 c) Against noise caused by electromagnetic induction, input wiring with cables twisted at equal, short intervals has
 some effect.
 6) For connecting cables to terminals, the use of solderless terminals with insulated sleeves (for 3.5mm terminal screw)
 is recommended.
(3) Request

- **Anti-noise Measures**

 ☐ When the power line generates excessive noise, recommend that you add an insulating transformer and use a noise filter.

 Caution!

 ![Diagram of noise filter and insulating transformer]

 ☐ In the event equipment, such as a magnet coil, a solenoid, an electromagnetic valve or a motor, placed near the apparatus produces noise, install a noise filter or a surge absorber (CR filter, varister) in parallel with the exciter coil or any equipment which is the source of the noise.

 ☐ If an L load (for example, a relay or an electromagnetic valve) is used for a contact output of the instrument, fit a CR filter (in the case of an AC circuit) or a diode (in the case of a DC circuit) in parallel with the load.

 Examples for Reference

 * Since noise may result in erroneous operation, fit a spark killer, across output terminals to be used (between C and L or between C and H).

 ☐ If a separate power supply is used for SSR/SSC driving, however, it should not be fitted.
a. SERIES FP21 CODES FOR ORDERING

- Codes for Ordering -

<table>
<thead>
<tr>
<th>CODE</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP21-</td>
<td>MPU-Based Auto-Tuning Programmable Controller, DIN 96 x 96mm</td>
</tr>
</tbody>
</table>

b. STANDARD RANGE AND USER-PROGRAMMABLE SCALING

Since the Series FP21 has been designed for user-selectable inputs, user-selectable ranges and user-programmable scaling, the unit will be shipped with one factory-set standard range.

If a range selection other than the standard is required, user-selectable inputs (T/C's) and user-selectable ranges (T/C's & RTD) are available as listed below at the specific application.

User-Programmable Scaling

DC Voltage & DC Current Inputs

For DC voltage and DC current inputs, user-programmable scaling is available with scaling range of –1990 ~ 9999 digits.
c. INITIAL VALUES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>INITIAL VALUE</th>
<th>ITEM</th>
<th>INITIAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode screen</td>
<td>AT. CFM</td>
<td>N. N.</td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td>LOC</td>
<td>ENT. Ini</td>
<td>N. N.</td>
</tr>
<tr>
<td>Execute parameter menu group</td>
<td>SV . HL</td>
<td>100%FS value</td>
<td></td>
</tr>
<tr>
<td>START PTN</td>
<td>1</td>
<td>SV . LL</td>
<td>0%FS value</td>
</tr>
<tr>
<td>STP</td>
<td>1</td>
<td>LIMIT MODE PTN</td>
<td>N</td>
</tr>
<tr>
<td>LINK FORMAT</td>
<td>No value</td>
<td>LIMIT MODE RPT</td>
<td>N</td>
</tr>
<tr>
<td>LINK EXEC.</td>
<td>0</td>
<td>CFM MODE</td>
<td>PTN</td>
</tr>
<tr>
<td>PV START</td>
<td>N</td>
<td>1/60</td>
<td></td>
</tr>
<tr>
<td>ADV MODE</td>
<td>STEP</td>
<td>Initial data menu group</td>
<td></td>
</tr>
<tr>
<td>(TIME)</td>
<td>00h01m</td>
<td>PV FILTER</td>
<td>0</td>
</tr>
<tr>
<td>FIX SV</td>
<td>0</td>
<td>PV BIAS</td>
<td>0</td>
</tr>
<tr>
<td>PID</td>
<td>1</td>
<td>R/D ACTION</td>
<td>R</td>
</tr>
<tr>
<td>ALARM</td>
<td>1</td>
<td>CYC TIME</td>
<td>SSR: 3s, CONTACT: 30s</td>
</tr>
<tr>
<td>Program data menu group</td>
<td>TMT1. TMT2</td>
<td>PV. SV</td>
<td></td>
</tr>
<tr>
<td>PATTERN NO.</td>
<td>1</td>
<td>TMT1</td>
<td>HL</td>
</tr>
<tr>
<td>SIARI SV</td>
<td>0</td>
<td>(PV)</td>
<td>LL</td>
</tr>
<tr>
<td>GUA SOAK</td>
<td>0</td>
<td>TMT2</td>
<td>HL</td>
</tr>
<tr>
<td></td>
<td>00h00m</td>
<td>ALARM</td>
<td>AL1</td>
</tr>
<tr>
<td></td>
<td>LL</td>
<td>0%FS value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%FS value</td>
<td></td>
</tr>
<tr>
<td>P1_9 PTN END</td>
<td>1</td>
<td>ALARM</td>
<td>AL2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>MODE</td>
<td>AL2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>value</td>
<td></td>
</tr>
<tr>
<td>P1_9 SV</td>
<td>0</td>
<td>AL1</td>
<td>SENS.</td>
</tr>
<tr>
<td>S1_9 TIME</td>
<td>00h01m</td>
<td>AL2</td>
<td>STBY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HL1</td>
<td></td>
</tr>
<tr>
<td>P1_9 PID No.</td>
<td>0</td>
<td>DI_1 MODE</td>
<td>0.2%</td>
</tr>
<tr>
<td>P9_S9 ALARM No.</td>
<td>0</td>
<td>DI_15</td>
<td>N</td>
</tr>
<tr>
<td>P1_S1</td>
<td>TS1-TS4</td>
<td>N</td>
<td>DO_2 SET1</td>
</tr>
<tr>
<td>: (ON TIME)</td>
<td>00h01m</td>
<td>PTN</td>
<td>2, 3</td>
</tr>
<tr>
<td>P1_S9</td>
<td>(OFF TIME)</td>
<td>00h01m</td>
<td>DO_3 SET1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>END</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td>Control data menu group</td>
<td>2, 3</td>
<td>TS3, TS4</td>
<td></td>
</tr>
<tr>
<td>CONTROL DATA</td>
<td>UNIT TC, Pt</td>
<td>TS1</td>
<td></td>
</tr>
<tr>
<td>(PID, ALM No.)</td>
<td>mV, V, mA</td>
<td>TS2, SO</td>
<td></td>
</tr>
<tr>
<td>PID_1</td>
<td>P</td>
<td>5.0%</td>
<td>RTD TYPE</td>
</tr>
<tr>
<td>: I</td>
<td>300s</td>
<td>RANGE</td>
<td>TC</td>
</tr>
<tr>
<td>PID_9</td>
<td>D</td>
<td>100s</td>
<td>%</td>
</tr>
<tr>
<td>PID_1</td>
<td>OH</td>
<td>100.0%</td>
<td>Pt</td>
</tr>
<tr>
<td>PID_9</td>
<td>OL</td>
<td>0.0%</td>
<td>Mv, V</td>
</tr>
<tr>
<td>ALARM_1</td>
<td>HL1</td>
<td>SCALE</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 – 800.0°C</td>
<td></td>
</tr>
<tr>
<td>ALARM_9</td>
<td>AL1</td>
<td>100% FS value</td>
<td>0 – 10mV, D1 – 0V</td>
</tr>
<tr>
<td></td>
<td>LL1</td>
<td>L</td>
<td>4 – 20mA</td>
</tr>
<tr>
<td>ALARM_9</td>
<td>AL2</td>
<td>D.POINT</td>
<td>100.0%</td>
</tr>
<tr>
<td>Key lock menu group</td>
<td>SO-MODE</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>KEY LOCK RST, ADV</td>
<td>POWER ON MODE</td>
<td>RST</td>
<td></td>
</tr>
<tr>
<td>HLD, RUN</td>
<td>TIME UNIT</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>FIX, MAN</td>
<td>PID</td>
<td>NORMAL</td>
<td></td>
</tr>
<tr>
<td>MEMORY INITIAL</td>
<td>min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = No., FS = Measuring range, h= hour, m= minute, and s= second
1. Procedure of Maintenance Replacement and Matters to Be Attended to (Steps for replacing defective items)

① Confirmation of Model Code:
Check the model code of the component part in trouble. (Open the control box, and you can find an appropriate code in the model label affixed to the instrument case.)

② Inquiry on Input Data:
Ask the manufacturer if input data (control date of external operation, event output, set value of position, etc. at the time when an error occurs) is necessary or not.

③ Confirmation of Present Wiring Condition:
Check and record the present wiring condition. Please note that in case input data is necessary for control, the same control operation as before is not possible with a replaced product unless such data is input.

④ Confirmation of Present Input Data:
When data is not known, call the input date for the product, check and record it. In case input data is required, the same control operation as before is not possible with a replaced product unless such data is input.

⑤ Repair of Present Product or Procurement of New Product:
In case the product in trouble is removable from the site of installation, remove and have it repaired. If it is not possible, arrange to acquire a new product for replacement.

⑥ Setting before Starting Operation:
When replaced by a new product, check the wiring, apply power and set items as described in [10]-(2) Mounting and Wring, [10]-(3) Request (Anti-noise Measures), and [4] INITIALIZE BEFORE USING.

2. Cause of Trouble and Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Error code is displayed.</td>
<td>Refer to “Error Codes, Causes and Remedies.”</td>
<td>Refer to “Error Codes, Causes and Remedies.”</td>
</tr>
<tr>
<td>② Displayed PV value seems to be incorrect.</td>
<td>① Set measuring range code is different from that of input sensor/input signal. ② Erroneous wiring to input terminals of sensor.</td>
<td>① Check if set measuring range code is correct for input signal. ② Correct wiring to input terminals of sensor.</td>
</tr>
<tr>
<td>③ Display on the front panel goes out and the instrument does not operate.</td>
<td>① Problem with power supply and wiring connection. ② Deterioration of the product.</td>
<td>① Inspect portions related to power source and wire connection. Check wiring. ② Examine the product and repair or replace.</td>
</tr>
<tr>
<td>④ Key unable to be operated.</td>
<td>① Keylock is in effect. ② Deterioration of the product. ③ In case communication function is added, the communication mode (Com) has been set.</td>
<td>① Release keylock. ② Examine and repair or replace the product. ③ Change the communication setting to the local mode (Loc).</td>
</tr>
<tr>
<td>⑤ ON-OFF action of control output is too fast.</td>
<td>① ON-OFF is set for P of PID. ② Too small a value set for hysteresis of ON-OFF action.</td>
<td>① Change the OFF set for P to two-position type ON-OFF action. ② Increase the hysteresis value of ON-OFF action.</td>
</tr>
</tbody>
</table>
3. Error Codes, Causes and Remedies

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHHH (HHHH)</td>
<td>Higher limit side scaleover</td>
<td>① A break of thermocouple input wiring ② A break of R.T.D. input A wiring ③ Input measured value exceeded higher limit of measuring range by 10%.</td>
<td>① Check thermocouple input wiring for a possible break. ② Check R.T.D. input A wiring for a possible break. If wiring has no problem, replace R.T.D. ③ For voltage or current input, check the transmitting unit of measured values. Check if set code of measuring range is correct for input signal.</td>
</tr>
<tr>
<td>LLLL (LLLL)</td>
<td>Lower limit side scaleover</td>
<td>① Input measured value fell ② A break of input wiring A ③ Breaks of input wiring ABB ④ Voltage, current input measured value fell from lower limit of measuring by 10%.</td>
<td>① Check wiring of inversed polarity for measured value input. ② ③ Check R.T.D. input terminals A, B for possible break. ④ For voltage or current input, check the transmitting unit of measured values. Check if set code of measuring range is correct for input signal.</td>
</tr>
<tr>
<td>HH-- (HH--)</td>
<td>Higher limit side scaleover of reference contact (CJ) of thermocouple input</td>
<td>Ambient temperature of the product has exceeded 80°C</td>
<td>① Reduce ambient temperature to the level provided in the environment conditions for the product. ② In case ambient temperature has not exceeded 80°C, examine the FP21.</td>
</tr>
<tr>
<td>LL-- (LL--)</td>
<td>Lower limit side scaleover of reference contact (CJ) of thermocouple input</td>
<td>Ambient temperature of the product has fallen to 20°C or lower.</td>
<td>① Raise ambient temperature to the level provided in the environment conditions for the product. ② In case ambient temperature has not fallen to 20°C, examine the product.</td>
</tr>
<tr>
<td>4000 ~ 4999</td>
<td>For Voltage or current input, abnormality of input value</td>
<td>Indicates that in case of voltage and current input, the PV value falls in a range from 10000 to 10999 but is not above +10% of the scaling value.</td>
<td>For voltage or current input, check the transmitting unit of measured values. Check if set code of measuring range is correct for input signal.</td>
</tr>
<tr>
<td>7000 ~ 7999</td>
<td>For Voltage or current input, abnormality of input value</td>
<td>Indicates that in case of voltage and current input, the PV value falls in a range from −2000 to −2999 but is not below −10% of the scaling value.</td>
<td>For voltage or current input, check the transmitting unit of measured values. Check if set code of measuring range is correct for input signal.</td>
</tr>
</tbody>
</table>

Data Back-up

As a countermeasure to power failure and to protect the memory when power is turned OFF, the FP21 Series uses a lithium battery for back-up (about 10 years). Besides, a non-volatile memory is also used for a part of data.
[9] LCD SCREEN DIAGRAM & KEY SEQUENCE

1) Whichever screen may be on display, you can move to the initial screen of the monitor screen group by pressing the [RVS] and [ITEM] keys.

2) When any screen other than the initial one of each screen group is on display, you can call the initial screen of the same group by pressing the [RVS] key.

3) By pressing the [RVS] key and the [ITEM] key respectively after pressing the [RVS] key, you can call a screen opposite to the direction of the [RVS] or [ITEM] key.

4) The [RVS] and [ITEM] keys are used to move the cursor from a parameter to another in the same screen. The [ITEM] key is used to move from a figure to another of a number.

5) The [RVS] and [ITEM] keys are used to change data in number or in letter(s). When "=" is displayed, the set data is registered by pressing the [ITEM] key.

6) When the [RVS] key is pressed with ":" on display, the cursor can be moved from a parameter to another in the same way as the [RVS] and [ITEM] keys are pressed, and changed data is registered when the [RVS] key is pressed with ":" on display.

7) Pressing the [RVS] and [ITEM] keys displays the lower limit value possible to be set.

8) Pressing the [RVS] and [ITEM] keys displays the higher limit value possible to be set.

9) Pressing the [RVS] and [ITEM] keys calls back data set immediately before if data is a numerical value.

10) When the [RVS] key is pressed, [YES] is displayed on the lower left side of the screen. If no key is pressed subsequently, the reverse mode is automatically released in 5 seconds. When the [RVS] key is pressed while [YES] is on display, [YES] goes out.
(1) In LIMIT MODE PTN [N], indication is of nine patterns and nine steps.
In LIMIT MODE PTN [Y], indication is of one pattern and 81 steps.
(2) If PATTERN No._ is set on the initial screen upon [N], the screen moves to the initial screen of the pattern No. (P _) set.
(3) If STEP No._ is set on the initial screen upon [Y], the screen moves to the initial screen (SV , TIME) of the step No. (P1-S_) set.

Indicated upon LIMIT MODE [Y]
Not indicated upon LIMIT MODE [Y]
The initial data cannot be changed at the time of DISPLAY ONLY. The initial data can be changed at the time of ENTRY AVLBL.